Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 65 SBT toán 10 - Chân trời sáng tạo

Giải bài 2 trang 65 SBT toán 10 - Chân trời sáng tạo

Giải bài 2 trang 65 SBT Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 2 trang 65, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.

Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:

Đề bài

Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:

a) d đi qua điểm \(M\left( {2;2} \right)\) và vectơ chỉ phương \(\overrightarrow u = \left( {4;7} \right)\)

b) d đi qua điểm \(N\left( {0;1} \right)\) và có vectơ pháp tuyến là \(\overrightarrow n = \left( { - 5;3} \right)\)

c) d đi qua \(A\left( { - 2; - 3} \right)\) và có hệ số góc \(k = 3\)

d) d đi qua hai điểm \(P\left( {1;1} \right),Q\left( {3;4} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 65 SBT toán 10 - Chân trời sáng tạo 1

+ Phương trình tổng quát đường thẳng đi qua \(M\left( {{x_1},{y_1}} \right)\) nhận \(\overrightarrow {{a_1}} = \left( {a;b} \right)\) là vectơ pháp tuyến là: \(a\left( {x - {x_1}} \right) + b\left( {y - {y_1}} \right) = 0\)

+ Phương trình nhận \(\overrightarrow {{a_2}} = \left( {c;d} \right)\) là vectơ chỉ phương → \(\overrightarrow {{a_3}} = \left( {d; - c} \right)\)là vectơ pháp tuyến của đường thẳng đó

Lời giải chi tiết

a)

+ Phương trình tham số: \(d:\left\{ \begin{array}{l}x = 2 + 4t\\y = 2 + 7t\end{array} \right.\)

+ \(\overrightarrow u = \left( {4;7} \right) \Rightarrow \overrightarrow n = \left( {7; - 4} \right) \Rightarrow d:7\left( {x - 2} \right) - 4\left( {y - 2} \right) = 0 \Rightarrow 7x - 4y - 6 = 0\)

b)

+ Phương trình tổng quát: \(d: - 5\left( {x - 0} \right) + 3\left( {y - 1} \right) = 0 \Rightarrow d: - 5x + 3y - 3 = 0\)

+ \(\overrightarrow n = \left( { - 5;3} \right) \Rightarrow \overrightarrow v = \left( {3;5} \right) \Rightarrow d:\left\{ \begin{array}{l}x = 3t\\y = 1 + 5t\end{array} \right.\)

c)

+ Phương trình tổng quát: \(y = 3\left( {x + 2} \right) - 3 \Rightarrow d:y = 3x + 3\)

+ \(\overrightarrow n = \left( {3; - 1} \right) \Rightarrow \overrightarrow v = \left( {1;3} \right) \Rightarrow d:\left\{ \begin{array}{l}x = - 2 + t\\y = - 3 + 3t\end{array} \right.\)

d)

+ \(\overrightarrow {PQ} = \left( {2;3} \right) \Rightarrow d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 + 3t\end{array} \right.\)

+ \(\overrightarrow {PQ} = \left( {2;3} \right) \Rightarrow \overrightarrow n = \left( {3; - 2} \right) \Rightarrow d:3\left( {x - 1} \right) - 2\left( {y - 1} \right) = 0 \Rightarrow 3x - 2y - 1 = 0\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 65 SBT toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 65 SBT Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 2 trang 65 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa vectơ, các phép cộng, trừ, nhân vectơ với một số thực, và cách biểu diễn vectơ trong hệ tọa độ.

Nội dung bài 2 trang 65 SBT Toán 10 - Chân trời sáng tạo

Bài 2 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Thực hiện các phép toán vectơ. Học sinh cần thực hiện các phép cộng, trừ, nhân vectơ với một số thực dựa trên các vectơ đã cho.
  • Dạng 2: Tìm vectơ thỏa mãn điều kiện cho trước. Bài tập này yêu cầu học sinh tìm vectơ có độ dài, hướng, hoặc tọa độ thỏa mãn các điều kiện cụ thể.
  • Dạng 3: Ứng dụng vectơ vào hình học. Học sinh sử dụng vectơ để chứng minh các tính chất hình học, tìm tọa độ điểm, hoặc giải các bài toán liên quan đến đường thẳng, tam giác, và các hình khác.

Hướng dẫn giải chi tiết bài 2 trang 65 SBT Toán 10 - Chân trời sáng tạo

Để giải bài 2 trang 65 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:

  1. Nắm vững định nghĩa và tính chất của vectơ. Hiểu rõ vectơ là gì, cách biểu diễn vectơ, và các phép toán vectơ.
  2. Sử dụng các công thức và quy tắc vectơ. Áp dụng đúng các công thức và quy tắc vectơ để thực hiện các phép toán và giải bài tập.
  3. Vẽ hình minh họa. Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  4. Kiểm tra lại kết quả. Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 2 trang 65 SBT Toán 10 - Chân trời sáng tạo

Ví dụ: Cho hai vectơ a = (1; 2)b = (-3; 4). Tính 2a - b.

Giải:

2a = 2 * (1; 2) = (2; 4)

2a - b = (2; 4) - (-3; 4) = (2 - (-3); 4 - 4) = (5; 0)

Vậy, 2a - b = (5; 0).

Mẹo giải bài tập vectơ hiệu quả

  • Sử dụng hệ tọa độ. Biểu diễn vectơ trong hệ tọa độ giúp bạn dễ dàng thực hiện các phép toán và giải bài tập.
  • Phân tích bài toán. Phân tích bài toán thành các bước nhỏ hơn giúp bạn tìm ra hướng giải quyết.
  • Luyện tập thường xuyên. Luyện tập thường xuyên giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 10 và giải bài tập vectơ hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 Chân trời sáng tạo
  • Sách bài tập Toán 10 Chân trời sáng tạo
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 10 trên YouTube

Kết luận

Bài 2 trang 65 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ và các ứng dụng của vectơ trong hình học. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả trên đây, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán 10.

Tài liệu, đề thi và đáp án Toán 10