Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 18 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 6 trang 18 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 6 trang 18 Sách bài tập Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách Giải bài 6 trang 18 sách bài tập Toán 10 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

có bao nhiêu tập con?

Đề bài

Tập hợp\(\left\{ {y \in \mathbb{N}\left| {y = 5 - {x^2},x \in \mathbb{N}} \right.} \right\}\) có bao nhiêu tập con?

A. 3

B. 4

C. 8

D. 16

Lời giải chi tiết

Vì \(y \in \mathbb{N} \Rightarrow y \ge 0\), suy ra \(5 - {x^5} \ge 0 \Leftrightarrow {x^2} \le 5\)

Mặt khác \(x \in \mathbb{N} \Rightarrow x \in \left\{ {0;1;2} \right\}\)

Vậy \(M = \left\{ {5;4;1} \right\}\), có 3 phần tử => có \({2^3} = 8\) tập con.

Chọn C

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6 trang 18 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6 trang 18 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 6 trang 18 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để xác định các tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.

Nội dung chi tiết bài 6 trang 18

Bài 6 thường bao gồm nhiều câu hỏi nhỏ, mỗi câu hỏi tập trung vào một khía cạnh khác nhau của kiến thức về tập hợp. Dưới đây là phân tích chi tiết từng phần của bài tập:

Câu a: Xác định các tập hợp

Câu a thường yêu cầu học sinh xác định các tập hợp dựa trên các điều kiện cho trước. Ví dụ, cho một tập hợp A các số tự nhiên chia hết cho 3 và nhỏ hơn 20, hãy liệt kê các phần tử của A. Để giải quyết câu này, học sinh cần nắm vững định nghĩa về tập hợp và các điều kiện để một phần tử thuộc tập hợp.

Câu b: Thực hiện các phép toán trên tập hợp

Câu b thường yêu cầu học sinh thực hiện các phép toán như hợp, giao, hiệu, bù của các tập hợp. Ví dụ, cho hai tập hợp A và B, hãy tìm A ∪ B (hợp của A và B) và A ∩ B (giao của A và B). Để giải quyết câu này, học sinh cần nắm vững định nghĩa và quy tắc thực hiện các phép toán trên tập hợp.

Câu c: Chứng minh các đẳng thức liên quan đến tập hợp

Câu c thường yêu cầu học sinh chứng minh các đẳng thức liên quan đến tập hợp. Ví dụ, chứng minh rằng A ∪ B = B ∪ A (tính giao hoán của phép hợp). Để giải quyết câu này, học sinh cần sử dụng các định nghĩa và quy tắc về tập hợp để biến đổi và chứng minh đẳng thức.

Phương pháp giải bài tập về tập hợp

Để giải quyết hiệu quả các bài tập về tập hợp, học sinh có thể áp dụng các phương pháp sau:

  • Hiểu rõ định nghĩa: Nắm vững định nghĩa về tập hợp, phần tử của tập hợp, và các phép toán trên tập hợp.
  • Sử dụng sơ đồ Venn: Sơ đồ Venn là một công cụ hữu ích để minh họa các tập hợp và các phép toán trên tập hợp.
  • Biến đổi đại số: Sử dụng các quy tắc và tính chất của các phép toán trên tập hợp để biến đổi và chứng minh các đẳng thức.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ: Cho A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Hãy tìm A ∪ B và A ∩ B.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6, 7} (tập hợp chứa tất cả các phần tử thuộc A hoặc B)
  • A ∩ B = {3, 4, 5} (tập hợp chứa tất cả các phần tử thuộc cả A và B)

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về tập hợp, bạn có thể luyện tập thêm với các bài tập sau:

  • Bài 7 trang 18 sách bài tập Toán 10 Chân trời sáng tạo
  • Bài 8 trang 18 sách bài tập Toán 10 Chân trời sáng tạo
  • Các bài tập tương tự trên các trang web học toán online khác.

Kết luận

Bài 6 trang 18 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh nắm vững kiến thức về tập hợp và các phép toán trên tập hợp. Bằng cách hiểu rõ định nghĩa, sử dụng các phương pháp giải phù hợp, và luyện tập thường xuyên, bạn có thể tự tin giải quyết các bài tập về tập hợp một cách hiệu quả.

Hy vọng bài viết này đã cung cấp cho bạn những thông tin hữu ích và giúp bạn hiểu rõ hơn về cách Giải bài 6 trang 18 sách bài tập Toán 10 - Chân trời sáng tạo. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10