Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 4 trang 94 sách bài tập Toán 10 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho hình bình hành ABCD có tâm O. Chứng minh rằng:
Đề bài
Cho hình bình hành ABCD có tâm O. Chứng minh rằng:
a) \(\overrightarrow {CO} - \overrightarrow {OB} = \overrightarrow {BA} \)
b) \(\overrightarrow {AB} - \overrightarrow {BC} = \overrightarrow {DB} \)
c) \(\overrightarrow {DA} - \overrightarrow {DB} = \overrightarrow {OD} - \overrightarrow {OC} \)
d) \(\overrightarrow {DA} - \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 \)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của phép cộng, trừ vectơ và quy tắc ba điểm
Lời giải chi tiết
a) Hình bình hành ABCD có tâm O nên \(\overrightarrow {CO} = \overrightarrow {OA} ,\overrightarrow {AB} = \overrightarrow {DC} ,\overrightarrow {BC} = \overrightarrow {AD} \)
\(\overrightarrow {CO} - \overrightarrow {OB} = \overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {BA} \) (đpcm)
b) \(\overrightarrow {AB} - \overrightarrow {BC} = \overrightarrow {DC} - \overrightarrow {BC} = \overrightarrow {DC} + \overrightarrow {CB} = \overrightarrow {DB} \) (đpcm)
c) Ta có:
\(\begin{array}{l}\overrightarrow {DA} - \overrightarrow {DB} = \overrightarrow {BA} \\\overrightarrow {OD} - \overrightarrow {OC} = \overrightarrow {CD} \end{array}\)
Mặt khác ta có \(\overrightarrow {BA} = \overrightarrow {CD} \), suy ra \(\overrightarrow {DA} - \overrightarrow {DB} = \overrightarrow {OD} - \overrightarrow {OC} \) (đpcm)
d) \(\overrightarrow {DA} - \overrightarrow {DB} + \overrightarrow {DC} = \left( {\overrightarrow {DA} - \overrightarrow {DB} } \right) + \overrightarrow {DC} = \overrightarrow {BA} + \overrightarrow {DC} \)
Mà ta có ABCD là hình bình hành nên \(\overrightarrow {BA} \) và \(\overrightarrow {DC} \) là hai vectơ đối nhau
\(\overrightarrow {BA} + \overrightarrow {DC} = \overrightarrow 0 \Rightarrow \overrightarrow {DA} - \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 \) (đpcm)
Bài 4 trang 94 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về hàm số bậc hai. Để giải bài này, học sinh cần nắm vững kiến thức về:
Bài 4 yêu cầu học sinh xác định các yếu tố của hàm số bậc hai và vẽ đồ thị hàm số. Cụ thể, bài toán có thể yêu cầu:
Để giải bài 4 trang 94 sách bài tập Toán 10 Chân trời sáng tạo, bạn có thể áp dụng các phương pháp sau:
Bài toán: Cho hàm số y = 2x2 - 4x + 1. Hãy xác định các yếu tố của hàm số và vẽ đồ thị.
Giải:
Vẽ đồ thị: Dựa vào các yếu tố đã tìm được, vẽ đồ thị hàm số trên mặt phẳng tọa độ.
Bài 4 trang 94 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!