Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn cách giải bài 2 trang 18 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tốt nhất để giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Giải các phương trình sau: a) \(2\sqrt {{x^2} + 4x - 7} = \sqrt { - 4{x^2} + 38x - 43} \) b) \(\sqrt {6{x^2} + 7x - 1} - \sqrt { - 29{x^2} - 41x + 10} = 0\)
Đề bài
Giải các phương trình sau:
a) \(2\sqrt {{x^2} + 4x - 7} = \sqrt { - 4{x^2} + 38x - 43} \)
b) \(\sqrt {6{x^2} + 7x - 1} - \sqrt { - 29{x^2} - 41x + 10} = 0\)
Phương pháp giải - Xem chi tiết
Bước 1: Chuyển các căn thức về hai vế khác nhau, bình phương hai vế
Bước 2: Rút gọn và giải phương trình bậc hai đó
Bước 3: Thay nghiệm vừa tìm được vào phương trình ban đầu và kết luận
Lời giải chi tiết
a) Bình phương 2 vế của phương trình đã cho, ta được:
\(\begin{array}{l}4\left( {{x^2} + 4x - 7} \right) = - 4{x^2} + 38x - 43\\ \Rightarrow 8{x^2} - 22x + 15 = 0\end{array}\)
\( \Rightarrow x = \frac{3}{2}\) hoặc \(x = \frac{5}{4}\)
Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy chỉ có \(x = \frac{3}{2}\) thỏa mãn
Vậy nghiệm của phương trình là \(x = \frac{3}{2}\)
b) Chuyển các dấu căn về hai vế khác nhau, bình phương hai vế ta được:
\(\begin{array}{l}\sqrt {6{x^2} + 7x - 1} - \sqrt { - 29{x^2} - 41x + 10} = 0\\ \Rightarrow \sqrt {6{x^2} + 7x - 1} = \sqrt { - 29{x^2} - 41x + 10} \\ \Rightarrow 6{x^2} + 7x - 1 = - 29{x^2} - 41x + 10\\ \Rightarrow 35{x^2} + 48x - 11 = 0\end{array}\)
\( \Rightarrow x = - \frac{{11}}{7}\) hoặc \(x = \frac{1}{5}\)
Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy hai giá trị đều thỏa mãn
Vậy nghiệm của phương trình là \(x = - \frac{{11}}{7}\) và \(x = \frac{1}{5}\)
Bài 2 trang 18 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp số. Bài tập này thường yêu cầu học sinh xác định các tập hợp con, tìm giao điểm, hợp, hiệu của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.
Bài 2 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể trên các tập hợp cho trước. Ví dụ:
Để giải bài 2 trang 18 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ: Cho hai tập hợp A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Hãy tìm:
Giải:
Khi giải bài 2 trang 18 SBT Toán 10 Chân trời sáng tạo, bạn cần lưu ý những điều sau:
Để củng cố kiến thức về giải bài 2 trang 18 SBT Toán 10 Chân trời sáng tạo, bạn có thể tự giải các bài tập sau:
Bài 2 trang 18 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải bài tập này. Chúc bạn học tập tốt!