Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 130 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em học sinh hiểu bài và làm bài tập một cách hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.
Khuê và Trọng ghi lại số tin nhắn điện thoại mà mỗi người nhận được từ ngày 1/9 đến ngày 15/9 năm 2020 ở bảng sau:
Đề bài
Khuê và Trọng ghi lại số tin nhắn điện thoại mà mỗi người nhận được từ ngày 1/9 đến ngày 15/9 năm 2020 ở bảng sau:
Khuê | 2 | 4 | 3 | 4 | 6 | 2 | 3 | 2 | 4 | 5 | 3 | 4 | 6 | 7 | 3 |
Trọng | 3 | 4 | 1 | 2 | 2 | 3 | 4 | 1 | 2 | 30 | 2 | 2 | 2 | 3 | 6 |
a) Hãy tìm phương sai của từng dãy số liệu.
b) Sau khi bỏ đi các giá trị ngoại lệ (nếu có), hãy so sánh số lượng tin nhắn mỗi bạn nhận được theo số trung bình và theo trung vị.
Phương pháp giải - Xem chi tiết
Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)
Tính số trung bình và số trung vị
Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)
Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.
Lời giải chi tiết
a)
- Khuê:
+ Trung bình của mẫu số liệu là \(\overline x = 3,87\)
+ Phương sai: \({S^2} = 2,25\)
+ Trọng:
+ Trung bình của mẫu số liệu là \(\overline x = 4,47\)
+ Phương sai: \({S^2} = 48,12\)
b)
- Khuê:
2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 6 | 6 | 7 |
+ Tứ phân vị: \({Q_2} = 4\); \({Q_1} = 3;{Q_3} = 5 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 2\)
Ta có \({Q_1} - 1,5.{\Delta _Q} = 3 - 1,5.2 = 0\) và \({Q_3} + 1,5.{\Delta _Q} = 5 + 1,5.2 = 8\) nên mẫu có giá trị không có ngoại lệ
+ Số trung bình: \(\overline x = 3,87\)
+ Số trung vị: 4
- Trọng:
1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 6 | 30 |
+ Tứ phân vị: \({Q_2} = 2\); \({Q_1} = 2;{Q_3} = 4 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 2\)
Ta có \({Q_1} - 1,5.{\Delta _Q} = 2 - 1,5.2 = - 1\) và \({Q_3} + 1,5.{\Delta _Q} = 4 + 1,5.2 = 7\) nên mẫu có giá trị ngoại lệ là 30
+ Loại bỏ giá trị ngoại lệ, dãy còn 14 giá trị:
1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 6 |
+ Số trung bình: \(\overline x = 2,64\)
+ Số trung vị: 2
è So sánh theo cả trung bình và trung vị thì Khuê có nhiều tin nhắn mỗi ngày hơn Trọng
Bài 5 trang 130 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 130 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, các em cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Ví dụ 1: Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính a + b.
Giải:a + b = (1 + (-3); 2 + 4) = (-2; 6).
Ví dụ 2: Cho vectơ a = (2; -1) và số thực k = 3. Tính ka.
Giải: ka = (3 * 2; 3 * (-1)) = (6; -3).
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác.
Bài 5 trang 130 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp các em hiểu sâu hơn về vectơ và các phép toán vectơ. Hy vọng với hướng dẫn chi tiết này, các em sẽ giải bài tập một cách dễ dàng và hiệu quả.
Công thức | Mô tả |
---|---|
a + b = (a1 + b1; a2 + b2) | Phép cộng vectơ |
a - b = (a1 - b1; a2 - b2) | Phép trừ vectơ |
ka = (ka1; ka2) | Tích của một số với vectơ |