Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 77 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 7 trang 77 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 7 trang 77 Sách bài tập Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 7 trang 77, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Trong các mệnh đề sau đây, phát biểu nào sai?

Đề bài

Cho đường tròn \(\left( C \right):{x^2} + {y^2} + 2x + 4y - 20 = 0\). Trong các mệnh đề sau đây, phát biểu nào sai?

A. \(\left( C \right)\) có tâm \(I\left( {1;2} \right)\)

B. \(\left( C \right)\) có bán kính \(R = 5\)

C. \(\left( C \right)\) đi qua điểm \(M\left( {2;2} \right)\)

D. \(\left( C \right)\) không đi qua điểm \(A\left( {1;1} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 77 sách bài tập toán 10 - Chân trời sáng tạo 1

Phương trình: \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình đường tròn khi: \({a^2} + {b^2} - c > 0\) khi đó \(I\left( {a;b} \right),R = \sqrt {{a^2} + {b^2} - c} \)

Lời giải chi tiết

+ Phương trình đã cho có các hệ số \(a = - 1,b = - 2,c = - 20\)

+ Tính \({a^2} + {b^2} - c = {\left( { - 1} \right)^2} + {\left( { - 2} \right)^2} - \left( { - 20} \right) = 25 > 0\), nên đường tròn có tâm \(I\left( { - 1; - 2} \right)\) và bán kính \(R = 5\)

Chọn A.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 7 trang 77 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 7 trang 77 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 7 trang 77 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.

Nội dung chi tiết bài 7 trang 77

Bài 7 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Thực hiện các phép toán vectơ: Tính tổng, hiệu của hai vectơ, tính tích của một số với vectơ.
  • Dạng 2: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh các đẳng thức vectơ cho trước.
  • Dạng 3: Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng bằng cách sử dụng vectơ để biểu diễn các điểm, đường thẳng, và các mối quan hệ giữa chúng.

Hướng dẫn giải chi tiết bài 7 trang 77

Để giải bài 7 trang 77 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:

  1. Nắm vững định nghĩa và tính chất của các phép toán vectơ: Phép cộng, phép trừ vectơ, tích của một số với vectơ.
  2. Hiểu rõ các quy tắc biến đổi vectơ: Quy tắc hình bình hành, quy tắc tam giác, quy tắc trung điểm.
  3. Luyện tập thường xuyên: Giải nhiều bài tập tương tự để rèn luyện kỹ năng và làm quen với các dạng bài khác nhau.

Ví dụ minh họa

Ví dụ 1: Cho hai vectơ ab. Tìm vectơ c sao cho a + b = c.

Giải: Để tìm vectơ c, ta sử dụng quy tắc hình bình hành. Vẽ hình bình hành ABCD sao cho AB = aAD = b. Khi đó, vectơ AC chính là vectơ c cần tìm.

Ví dụ 2: Cho vectơ a = (1; 2) và số thực k = 3. Tính vectơ ka.

Giải: Vectơ ka = (3 * 1; 3 * 2) = (3; 6).

Mẹo giải nhanh

Để giải nhanh các bài tập về vectơ, bạn có thể sử dụng các mẹo sau:

  • Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng các công thức: Nắm vững các công thức liên quan đến phép cộng, phép trừ vectơ, tích của một số với vectơ.
  • Biến đổi khéo léo: Sử dụng các tính chất của các phép toán vectơ để biến đổi biểu thức một cách khéo léo, giúp đơn giản hóa bài toán.

Bài tập luyện tập

Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:

  1. Cho hai vectơ a = (2; -1) và b = (-3; 4). Tính a + b.
  2. Cho vectơ a = (1; 0) và số thực k = -2. Tính ka.
  3. Chứng minh rằng a - b = a + (-b).

Kết luận

Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 7 trang 77 sách bài tập Toán 10 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 10