Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 103 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 4 trang 103 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 4 trang 103 Sách bài tập Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 103 sách bài tập Toán 10 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Chứng minh rằng với hai vectơ không cùng phương

Đề bài

Chứng minh rằng với hai vectơ không cùng phương \(\overrightarrow a \) và \(\overrightarrow b \), ta có:

\(\left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| \le \left| {\overrightarrow a + \overrightarrow b } \right| \le \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\)

Lời giải chi tiết

TH1: \(\overrightarrow a = \overrightarrow 0 \)

\( \Rightarrow \left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| = \left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| = \left| {\overrightarrow b } \right|\)

TH2: \(\overrightarrow b = \overrightarrow 0 \)

\( \Rightarrow \left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| = \left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| = \left| {\overrightarrow a } \right|\)

TH3: \(\overrightarrow a \ne \overrightarrow 0 \) và \(\overrightarrow b \ne \overrightarrow 0 \)

Lấy A bất kì, vẽ \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \). Dựng hình bình hành ABCD, đặt \(\overrightarrow c = \overrightarrow {AC} \)

Giải bài 4 trang 103 sách bài tập toán 10 - Chân trời sáng tạo 1

 Ta có: \(\overrightarrow a + \overrightarrow b = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} = \overrightarrow c \)

Xét tam giác ABC, theo bất đẳng thức tam giác ta có:

\(AB - BC < AC < AB + BC\)

Mà \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow {AB} } \right| = AB;\left| {\overrightarrow b } \right| = \left| {\overrightarrow {AD} } \right| = AD = BC;\left| {\overrightarrow c } \right| = \left| {\overrightarrow {AC} } \right| = AC;\)

\( \Rightarrow \left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\)

Vậy \(\left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| \le \left| {\overrightarrow a + \overrightarrow b } \right| \le \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4 trang 103 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 10 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4 trang 103 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 4 trang 103 sách bài tập Toán 10 - Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.

Nội dung chi tiết bài 4 trang 103

Bài 4 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Thực hiện các phép toán vectơ: Tính tổng, hiệu của hai vectơ, tính tích của một số với vectơ.
  • Dạng 2: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh các đẳng thức vectơ cho trước.
  • Dạng 3: Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng bằng cách sử dụng vectơ để biểu diễn các điểm, đường thẳng, và các mối quan hệ giữa chúng.

Lời giải chi tiết bài 4 trang 103

Để giúp bạn hiểu rõ hơn về cách giải bài 4 trang 103, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài tập. Dưới đây là một ví dụ:

Ví dụ: Cho hai vectơ ab. Tìm vectơ c sao cho c = 2a - b.

Lời giải:

Để tìm vectơ c, ta thực hiện phép toán vectơ như sau:

c = 2a - b = (2ax, 2ay) - (bx, by) = (2ax - bx, 2ay - by)

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:

  • Nắm vững các định nghĩa và tính chất của các phép toán vectơ.
  • Sử dụng sơ đồ hình học để minh họa các vectơ và các mối quan hệ giữa chúng.
  • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài tập và rèn luyện kỹ năng giải toán.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tập về vectơ:

  • Các trang web học toán online uy tín.
  • Các video bài giảng về vectơ trên YouTube.
  • Các diễn đàn học toán nơi bạn có thể trao đổi và học hỏi kinh nghiệm từ những người khác.

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 4 trang 103 sách bài tập Toán 10 - Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt!

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng.
Phép cộng vectơQuy tắc hình bình hành hoặc quy tắc tam giác.
Tích của một số với vectơLàm thay đổi độ dài của vectơ.
Bảng tóm tắt các khái niệm cơ bản về vectơ.

Tài liệu, đề thi và đáp án Toán 10