Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 7 trang 79 trong sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Lập phương trình đường tròn trong các trường hợp sau:
Đề bài
Lập phương trình đường tròn trong các trường hợp sau:
a) Có tâm \(I\left( {2;2} \right)\) và bán kính bằng 7
b) Có tâm \(J\left( {0; - 3} \right)\) và đi qua điểm \(M\left( { - 2; - 7} \right)\)
c) Đi qua hai điểm \(A\left( {2;2} \right),B\left( {6;2} \right)\) và có tâm nằm trên đường thẳng \(x - y = 0\)
d) Đi qua gốc tọa độ và cắt hai trục tọa độ tại các điểm có hoành độ là 8, tung độ là 6
Phương pháp giải - Xem chi tiết
Phương trình đường tròn \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) có tâm \(I\left( {a;b} \right)\) và bán kính R
Lời giải chi tiết
a) Có tâm \(I\left( {2;2} \right)\) và bán kính bằng 7
+ Phương trình đường tròn \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 49\)
b) Có tâm \(J\left( {0; - 3} \right)\) và đi qua điểm \(M\left( { - 2; - 7} \right)\)
+ Bán kính \(JM = R = \sqrt {{2^2} + {4^2}} = \sqrt {20} \)
+ Phương trình đường tròn \({x^2} + {\left( {y + 3} \right)^2} = 20\)
c) Đi qua hai điểm \(A\left( {2;2} \right),B\left( {6;2} \right)\) và có tâm nằm trên đường thẳng \(x - y = 0\)
+ Gọi I là tâm đường tròn, \(I \in x - y = 0 \Rightarrow I\left( {t;t} \right)\)
+ \(IA = IB \Leftrightarrow {\left( {t - 2} \right)^2} + {\left( {t - 2} \right)^2} = {\left( {t - 6} \right)^2} + {\left( {t - 2} \right)^2}\)
\(\begin{array}{l} \Leftrightarrow {\left( {t - 2} \right)^2} = {\left( {t - 6} \right)^2} \Leftrightarrow {t^2} - 4t + 4 = {t^2} - 12t + 36\\ \Leftrightarrow 12t - 4t = 36 - 4 \Leftrightarrow 8t = 32 \Rightarrow t = 4\\ \Rightarrow I(4;4);R = IA = 2\sqrt 2 \end{array}\)
+ Phương trình đường tròn \({\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} = 8\)
d) Đi qua gốc tọa độ và cắt hai trục tọa độ tại các điểm có hoành độ là 8, tung độ là 6
+ Gọi tâm đường tròn là \(I\left( {a;b} \right)\), hai điểm A(8;0), B(0;6) là giao của đường tròn với 2 trục tọa độ.
Ta có: \(IO = IA = IB \Leftrightarrow I{O^2} = I{A^2} = I{B^2}\)
\(\begin{array}{l} \Leftrightarrow {a^2} + {b^2} = {\left( {a - 8} \right)^2} + {b^2} = {a^2} + {\left( {b - 6} \right)^2}\\ \Rightarrow \left\{ \begin{array}{l}{a^2} = {\left( {a - 8} \right)^2}\\{b^2} = {\left( {b - 6} \right)^2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 8 - a\\b = 6 - b\end{array} \right.\\ \Rightarrow a = 4;b = 3\end{array}\)
Khi đó \(R = IO = \sqrt {{4^2} + {3^2}} = 5\)
\( \Rightarrow \) Phương trình đường tròn \({\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 25\)
Bài 7 trang 79 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải bài tập vectơ hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ 1: Cho hai vectơ a = (2; -1) và b = (-3; 4). Tính a + b và 2a.
Giải:
Ví dụ 2: Cho ba điểm A(1; 2), B(3; 4), C(5; 6). Chứng minh rằng ba điểm A, B, C thẳng hàng.
Giải:
Ta có AB = (3 - 1; 4 - 2) = (2; 2) và AC = (5 - 1; 6 - 2) = (4; 4). Vì AC = 2AB nên ba điểm A, B, C thẳng hàng.
Để củng cố kiến thức và kỹ năng giải bài tập vectơ, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 10 Chân trời sáng tạo và các tài liệu tham khảo khác. Hãy chú trọng việc hiểu rõ bản chất của các phép toán và vận dụng linh hoạt các kiến thức đã học.
Bài 7 trang 79 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán vectơ. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài tập tương tự.