Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 22 SBT toán 10 - Chân trời sáng tạo

Giải bài 8 trang 22 SBT toán 10 - Chân trời sáng tạo

Giải bài 8 trang 22 SBT Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn cách giải bài 8 trang 22 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập mới. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, đầy đủ và kèm theo các giải thích chi tiết để giúp bạn nắm vững kiến thức.

Người ta thử nghiệm ném một quả bóng trên Mặt Trăng. Nếu quả bóng được ném lên từ độ cao \({h_0}\) (m) so với bề mặt của Mặt Trăng với vận tốc \({v_0}\) (m/s) thì độ cao của quả bóng sau t giây được cho bởi hàm số \(h\left( t \right) = - \frac{1}{2}g{t^2} + {v_0}t + {h_0}\) với \(g = 1,625\)m/s2 là gia tốc trọng trường của Mặt Trăng

Đề bài

Người ta thử nghiệm ném một quả bóng trên Mặt Trăng. Nếu quả bóng được ném lên từ độ cao \({h_0}\) (m) so với bề mặt của Mặt Trăng với vận tốc \({v_0}\) (m/s) thì độ cao của quả bóng sau t giây được cho bởi hàm số \(h\left( t \right) = - \frac{1}{2}g{t^2} + {v_0}t + {h_0}\) với \(g = 1,625\)m/s2 là gia tốc trọng trường của Mặt Trăng

a) Biết độ cao ban đầu của quả bóng vào các thời điểm 8 giây và 12 giây lần lượt là 30 m và 5 m, hãy tìm vận tốc ném; độ cao ban đầu của quả bóng và viết công thức \(h\left( t \right)\)

b) Quả bóng đạt độ cao trên 29 m trong bao nhiêu giây?

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải chi tiết

a) Tại t=8 thì h=30 và tại t=12 thì h=5 nên ta có:

\(\left\{ \begin{array}{l}30 = - \frac{1}{2}.1,{625.8^2} + {v_0}.8 + {h_0}\\5 = - \frac{1}{2}.1,{625.12^2} + {v_0}.12 + {h_0}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}8{v_0} + {h_0} = 82\\12{v_0} + {h_0} = 122\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{v_0} = 10\\{h_0} = 2\end{array} \right.\)

Suy ra phương trình miêu tả độ cao của bóng so với mặt đất là \(h\left( t \right) = - \frac{{13}}{{16}}{t^2} + 10t + 2\)

Vậy \({h_{_0}}\) và \({v_0}\) lần lượt là 2 m và 10 m/s

b) Chiều cao của quả bóng trên 4 m tương đương \(h\left( t \right) > 29 \Leftrightarrow - \frac{{13}}{{16}}{t^2} + 10t + 2 > 29\)

Giải bất phương trình ta có \( - \frac{{13}}{{16}}{t^2} + 10t - 27 > 0 \Leftrightarrow 4 < t < \frac{{108}}{{13}}\)

Khoảng thời gian quả bóng ở độ cao trên 29m là: \(\frac{{108}}{{13}} - 4 = \frac{{56}}{{13}} \approx 4,31\) (giây)

Vậy bóng đạt độ cao trên 29 m trong khoảng thời gian gần bằng 4,31 giây

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 8 trang 22 SBT toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 8 trang 22 SBT Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa vectơ, các phép cộng, trừ, nhân vectơ với một số thực, và cách biểu diễn vectơ trong hệ tọa độ.

Nội dung bài 8 trang 22 SBT Toán 10 - Chân trời sáng tạo

Bài 8 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính toán các phép toán vectơ (cộng, trừ, nhân với một số thực).
  • Dạng 2: Chứng minh đẳng thức vectơ.
  • Dạng 3: Tìm tọa độ của vectơ.
  • Dạng 4: Ứng dụng vectơ để giải các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc,...).

Hướng dẫn giải chi tiết bài 8 trang 22 SBT Toán 10 - Chân trời sáng tạo

Để giải bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:

  1. Nắm vững định nghĩa và tính chất của vectơ: Hiểu rõ vectơ là gì, các yếu tố của vectơ (điểm gốc, điểm cuối, độ dài, hướng), và các tính chất của phép cộng, trừ, nhân vectơ với một số thực.
  2. Sử dụng các công thức và quy tắc: Áp dụng đúng các công thức và quy tắc về phép toán vectơ, chẳng hạn như quy tắc hình bình hành, quy tắc tam giác, công thức trung điểm, công thức trọng tâm,...
  3. Biểu diễn vectơ trong hệ tọa độ: Biết cách biểu diễn vectơ bằng tọa độ và sử dụng các phép toán vectơ trong hệ tọa độ.
  4. Phân tích bài toán: Đọc kỹ đề bài, xác định các yếu tố đã cho và yêu cầu của bài toán.
  5. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải bài toán.
  6. Thực hiện giải: Thực hiện các bước giải theo kế hoạch đã lập.
  7. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 8 trang 22 SBT Toán 10 - Chân trời sáng tạo

Ví dụ: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Giải:

Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC. Vậy, AB + AC = 2AM (đpcm).

Mẹo giải nhanh bài tập vectơ

  • Sử dụng hình vẽ để trực quan hóa bài toán.
  • Áp dụng các quy tắc và công thức một cách linh hoạt.
  • Chia nhỏ bài toán lớn thành các bài toán nhỏ hơn.
  • Kiểm tra lại kết quả bằng cách thay số vào.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 10 và giải các bài tập về vectơ, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 Chân trời sáng tạo.
  • Sách bài tập Toán 10 Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về vectơ trên YouTube.

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 10