Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn cách giải bài 8 trang 22 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập mới. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, đầy đủ và kèm theo các giải thích chi tiết để giúp bạn nắm vững kiến thức.
Người ta thử nghiệm ném một quả bóng trên Mặt Trăng. Nếu quả bóng được ném lên từ độ cao \({h_0}\) (m) so với bề mặt của Mặt Trăng với vận tốc \({v_0}\) (m/s) thì độ cao của quả bóng sau t giây được cho bởi hàm số \(h\left( t \right) = - \frac{1}{2}g{t^2} + {v_0}t + {h_0}\) với \(g = 1,625\)m/s2 là gia tốc trọng trường của Mặt Trăng
Đề bài
Người ta thử nghiệm ném một quả bóng trên Mặt Trăng. Nếu quả bóng được ném lên từ độ cao \({h_0}\) (m) so với bề mặt của Mặt Trăng với vận tốc \({v_0}\) (m/s) thì độ cao của quả bóng sau t giây được cho bởi hàm số \(h\left( t \right) = - \frac{1}{2}g{t^2} + {v_0}t + {h_0}\) với \(g = 1,625\)m/s2 là gia tốc trọng trường của Mặt Trăng
a) Biết độ cao ban đầu của quả bóng vào các thời điểm 8 giây và 12 giây lần lượt là 30 m và 5 m, hãy tìm vận tốc ném; độ cao ban đầu của quả bóng và viết công thức \(h\left( t \right)\)
b) Quả bóng đạt độ cao trên 29 m trong bao nhiêu giây?
Lưu ý: Đáp số làm tròn đến hàng phần trăm.
Lời giải chi tiết
a) Tại t=8 thì h=30 và tại t=12 thì h=5 nên ta có:
\(\left\{ \begin{array}{l}30 = - \frac{1}{2}.1,{625.8^2} + {v_0}.8 + {h_0}\\5 = - \frac{1}{2}.1,{625.12^2} + {v_0}.12 + {h_0}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}8{v_0} + {h_0} = 82\\12{v_0} + {h_0} = 122\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{v_0} = 10\\{h_0} = 2\end{array} \right.\)
Suy ra phương trình miêu tả độ cao của bóng so với mặt đất là \(h\left( t \right) = - \frac{{13}}{{16}}{t^2} + 10t + 2\)
Vậy \({h_{_0}}\) và \({v_0}\) lần lượt là 2 m và 10 m/s
b) Chiều cao của quả bóng trên 4 m tương đương \(h\left( t \right) > 29 \Leftrightarrow - \frac{{13}}{{16}}{t^2} + 10t + 2 > 29\)
Giải bất phương trình ta có \( - \frac{{13}}{{16}}{t^2} + 10t - 27 > 0 \Leftrightarrow 4 < t < \frac{{108}}{{13}}\)
Khoảng thời gian quả bóng ở độ cao trên 29m là: \(\frac{{108}}{{13}} - 4 = \frac{{56}}{{13}} \approx 4,31\) (giây)
Vậy bóng đạt độ cao trên 29 m trong khoảng thời gian gần bằng 4,31 giây
Bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa vectơ, các phép cộng, trừ, nhân vectơ với một số thực, và cách biểu diễn vectơ trong hệ tọa độ.
Bài 8 thường bao gồm các dạng bài tập sau:
Để giải bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Ví dụ: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Giải:
Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC. Vậy, AB + AC = 2AM (đpcm).
Để học tốt môn Toán 10 và giải các bài tập về vectơ, bạn có thể tham khảo các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tốt và đạt kết quả cao trong môn Toán!