Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 36 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em học sinh hiểu bài và làm bài tập một cách hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.
Bác Dũng dự định quy hoạch x sào đất trồng cà tím và y sào đất trồng cà chua. Bác chỉ có không quá 9 triệu đồng để mua hạt giống.
Đề bài
Bác Dũng dự định quy hoạch x sào đất trồng cà tím và y sào đất trồng cà chua. Bác chỉ có không quá 9 triệu đồng để mua hạt giống. Cho biết tiền mua hạt giống cà tím 200 000 đồng/sào và cà chua là 100 000 đồng/sào. Viết hệ phương trình mô tả điều kiện ràng buộc đối với x, y
Lời giải chi tiết
Ta có hệ bất phương trình ràng buộc đối với x, y như sau:
\(\left\{ \begin{array}{l}200000x + 100000y \le 9000000\\x \ge 0\\y \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + y \le 90\\x \ge 0\\y \ge 0\end{array} \right.\)
Bài 5 trang 36 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về các phép toán vectơ, đặc biệt là phép cộng, trừ vectơ và phép nhân vectơ với một số thực để giải quyết các bài toán cụ thể.
Bài 5 bao gồm các dạng bài tập sau:
Cho hai vectơ a và b. Tìm vectơ a + b.
Giải: Để tìm vectơ tổng a + b, ta áp dụng quy tắc hình bình hành. Vẽ hình bình hành ABCD sao cho AB = a và AD = b. Khi đó, vectơ AC chính là vectơ a + b.
Cho hai vectơ a và b. Tìm vectơ a - b.
Giải: Vectơ hiệu a - b được định nghĩa là a + (-b). Do đó, ta tìm vectơ đối của b, ký hiệu là -b, rồi cộng với vectơ a theo quy tắc hình bình hành.
Cho a = (1; 2) và b = (-3; 4). Tính a + b và a - b.
Giải:
a + b = (1 + (-3); 2 + 4) = (-2; 6)
a - b = (1 - (-3); 2 - 4) = (4; -2)
Bài 5 trang 36 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự.