Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 12 trang 78 sách bài tập Toán 10 - Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu và phù hợp với chương trình học Toán 10 hiện hành. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!
Elip với độ dài hai trục là 20 và 12 có phương trình chính tắc là:
Đề bài
Elip với độ dài hai trục là 20 và 12 có phương trình chính tắc là:
A. \(\frac{{{x^2}}}{{40}} + \frac{{{y^2}}}{{12}} = 1\)
B. \(\frac{{{x^2}}}{{1600}} + \frac{{{y^2}}}{{144}} = 1\)
C. \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)
D. \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{36}} = 1\)
Phương pháp giải - Xem chi tiết
Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)
Lời giải chi tiết
Gọi PTCT của elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
Trục lớn \(2a = 10 \Rightarrow a = 10\)
Trục nhỏ \(2b = 12 \Rightarrow b = 6\)
\( \Rightarrow \) PTCT của elip là \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)
Chọn C.
Bài 12 trang 78 sách bài tập Toán 10 - Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 12 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ cùng giải một bài tập cụ thể từ bài 12 trang 78:
Bài tập: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2.
Lời giải:
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 12 trang 78 sách bài tập Toán 10 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các bạn sẽ tự tin hơn khi giải quyết các bài toán tương tự. Chúc các bạn học tốt!