Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 131 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 7 trang 131 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 7 trang 131 Sách bài tập Toán 10 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 7 trang 131 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em học sinh hiểu bài và làm bài tập một cách hiệu quả.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.

Tứ phân vị thứ nhất của mẫu số liệu 2; 4; 5; 6; 6; 7; 3; 4 là:

Đề bài

Tứ phân vị thứ nhất của mẫu số liệu 2; 4; 5; 6; 6; 7; 3; 4 là:

A. 3;

B. 3,5 ; 

C. 4; 

D. 4,5.

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 131 sách bài tập toán 10 - Chân trời sáng tạo 1

Bước 1: Sắp xếp số liệu theo thứ tự không giảm: \({x_1},{x_2},...,{x_n}\)

Bước 2: Tìm trung vị của mẫu số liệu

 Bằng \({x_m}\) nếu \(n = 2m - 1\); là \(\frac{1}{2}({x_m} + {x_{m + 1}})\) nếu \(n = 2m\)

Bước 3: Tìm tứ phân vị thứ nhất

Là trung vị của nửa số liệu đã sắp xếp bên trái trung vị (không bao gồm trung vị nếu n lẻ)

Lời giải chi tiết

+ Sắp xếp số liệu theo thứ tự không giảm

2

3

4

4

5

6

6

7

+ Tứ phân vị: \({Q_2} = \left( {4 + 5} \right):2 = 4,5\); \({Q_1} = \left( {3 + 4} \right):2 = 3,5;{Q_3} = \left( {6 + 6} \right):2 = 6\)

Chọn B.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 7 trang 131 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 7 trang 131 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 7 trang 131 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.

Nội dung chi tiết bài 7 trang 131

Bài 7 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Thực hiện các phép toán vectơ: Tính tổng, hiệu của hai vectơ, tính tích của một số với vectơ.
  • Dạng 2: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh các đẳng thức vectơ cho trước.
  • Dạng 3: Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng bằng cách sử dụng vectơ để biểu diễn các điểm, đường thẳng, và các mối quan hệ giữa chúng.

Hướng dẫn giải chi tiết từng phần của bài 7

Phần a: Tính tổng hai vectơ

Để tính tổng hai vectơ \vec{a}"\vec{b}", ta thực hiện phép cộng theo tọa độ: \vec{a} + \vec{b} = (x_a + x_b, y_a + y_b)". Ví dụ, nếu \vec{a} = (1, 2)"\vec{b} = (3, -1)" thì \vec{a} + \vec{b} = (1+3, 2-1) = (4, 1)".

Phần b: Tính hiệu hai vectơ

Để tính hiệu hai vectơ \vec{a}"\vec{b}", ta thực hiện phép trừ theo tọa độ: \vec{a} - \vec{b} = (x_a - x_b, y_a - y_b)". Ví dụ, nếu \vec{a} = (1, 2)"\vec{b} = (3, -1)" thì \vec{a} - \vec{b} = (1-3, 2-(-1)) = (-2, 3)".

Phần c: Tính tích của một số với vectơ

Để tính tích của một số k" với vectơ \vec{a}", ta nhân số k" với từng tọa độ của vectơ \vec{a}": k\vec{a} = (kx_a, ky_a)". Ví dụ, nếu \vec{a} = (1, 2)"k = 3" thì 3\vec{a} = (3*1, 3*2) = (3, 6)".

Ví dụ minh họa

Ví dụ: Cho \vec{a} = (2, -3)"\vec{b} = (-1, 4)". Tính 2\vec{a} - \vec{b}".

Giải:

  1. Tính 2\vec{a} = 2(2, -3) = (4, -6)".
  2. Tính 2\vec{a} - \vec{b} = (4, -6) - (-1, 4) = (4 - (-1), -6 - 4) = (5, -10)".

Lưu ý khi giải bài tập về vectơ

  • Nắm vững các định nghĩa và tính chất của các phép toán vectơ.
  • Sử dụng hệ tọa độ để biểu diễn các vectơ và thực hiện các phép toán một cách dễ dàng.
  • Kiểm tra lại kết quả sau khi tính toán để đảm bảo tính chính xác.
  • Vận dụng các kiến thức về vectơ vào giải quyết các bài toán hình học một cách linh hoạt.

Tổng kết

Bài 7 trang 131 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10