Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 94 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, từng bước, giúp bạn hiểu rõ bản chất của bài toán.
Tìm độ lớn của lực F3
Đề bài
Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} \) và \(\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết độ lớn của \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều là 100N và \(\widehat {AMB} = 60^\circ \). Tìm độ lớn của lực \(\overrightarrow {{F_3}} \)
Phương pháp giải - Xem chi tiết
Điểm M dưới tác động của 3 lực nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)
Và áp dụng các tính chất của phép cộng của vectơ, quy tắc hình bình hành
Lời giải chi tiết
Điểm M dưới tác động của 3 lực nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \Rightarrow \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)
Dựng hình bình hành AMBD ta có: \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MD} \)
Suy ra \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {MD} + \overrightarrow {MC} = \overrightarrow 0 \) (1)
(1) xảy ra khi và chỉ khi \(\overrightarrow {MD} \) và \(\overrightarrow {MC} \) là hai vectơ đối nhau
\( \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {MC} } \right| = \left| {\overrightarrow {MD} } \right| = MD\)
AMBD là hình bình hành suy ra \(\overrightarrow {AD} = \overrightarrow {MB} ,\widehat {AMB} = 60^\circ \Rightarrow \widehat {MAD} = 120^\circ \)
Áp dụng định lí côsin ta có:
\(\begin{array}{l}AD = \sqrt {A{M^2} + A{D^2} - 2AM.AD.\cos \widehat {MAD}} \\ = \sqrt {{{100}^2} + {{100}^2} - 2.100.100.\cos 120^\circ } \simeq 173,21\end{array}\)
Vậy độ lớn của lực \(\overrightarrow {{F_3}} \) gần bằng 173,21 N
Bài 5 trang 94 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về hàm số bậc hai. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:
Bài 5 thường yêu cầu học sinh xác định các yếu tố của hàm số bậc hai hoặc vẽ đồ thị hàm số. Để giải bài tập này, bạn cần thực hiện các bước sau:
Bài 5a: Cho hàm số y = x2 - 4x + 3. Tìm tọa độ đỉnh của parabol.
Giải:
Hàm số y = x2 - 4x + 3 có a = 1, b = -4, c = 3.
Tọa độ đỉnh của parabol là:
xđỉnh = -b / 2a = -(-4) / (2 * 1) = 2
yđỉnh = (2)2 - 4 * 2 + 3 = 4 - 8 + 3 = -1
Vậy tọa độ đỉnh của parabol là (2; -1).
Bài 5b: Cho hàm số y = -2x2 + 8x - 5. Tìm trục đối xứng của parabol.
Giải:
Hàm số y = -2x2 + 8x - 5 có a = -2, b = 8, c = -5.
Trục đối xứng của parabol là:
x = -b / 2a = -8 / (2 * -2) = 2
Vậy trục đối xứng của parabol là x = 2.
Bài 5c: Cho hàm số y = 3x2 + 6x + 1. Tìm giao điểm của parabol với trục tung.
Giải:
Giao điểm của parabol với trục tung là điểm có hoành độ x = 0.
Thay x = 0 vào hàm số y = 3x2 + 6x + 1, ta được:
y = 3 * (0)2 + 6 * 0 + 1 = 1
Vậy giao điểm của parabol với trục tung là (0; 1).
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 10 Chân trời sáng tạo. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên giaitoan.edu.vn.
Hàm số bậc hai có nhiều ứng dụng trong thực tế, ví dụ như:
Việc nắm vững kiến thức về hàm số bậc hai sẽ giúp bạn giải quyết các bài toán thực tế một cách hiệu quả.
Bài 5 trang 94 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai. Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài tập và hiểu rõ hơn về hàm số bậc hai.