Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 14 SBT toán 10 - Chân trời sáng tạo

Giải bài 6 trang 14 SBT toán 10 - Chân trời sáng tạo

Giải bài 6 trang 14 SBT toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 6 trang 14 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tìm giá trị của tham số m để: a) \(x = 3\) là một nghiệm của bất phương trình \(\left( {{m^2} - 1} \right){x^2} + 2mx - 15 \le 0\) b) \(x = - 1\) là một nghiệm của bất phương trình \(m{x^2} - 2x + 1 > 0\)

Đề bài

Tìm giá trị của tham số m để:

a) \(x = 3\) là một nghiệm của bất phương trình \(\left( {{m^2} - 1} \right){x^2} + 2mx - 15 \le 0\)

b) \(x = - 1\) là một nghiệm của bất phương trình \(m{x^2} - 2x + 1 > 0\)

c) \(x = \frac{5}{2}\) là một nghiệm của bất phương trình \(4{x^2} + 2mx - 5m \le 0\)

d) \(x = - 2\) là một nghiệm của bất phương trình \(\left( {2m - 3} \right){x^2} - \left( {{m^2} + 1} \right)x \ge 0\)

e) \(x = m + 1\) là một nghiệm của bất phương trình \(2{x^2} + 2mx - {m^2} - 2 < 0\)

Lời giải chi tiết

a) \(x = 3\) là nghiệm của bất phương trình \(\left( {{m^2} - 1} \right){x^2} + 2mx - 15 \le 0\) khi và chỉ khi:

\(\left( {{m^2} - 1} \right){.3^2} + 2m.3 - 15 \le 0 \Leftrightarrow 9{m^2} + 6m - 24 \le 0\)

Tam thức \(9{m^2} + 6m - 24\) có \(a = 9 > 0\) và hai nghiệm là \(m = - 2\) và \(m = \frac{4}{3}\)

Do đó \(9{m^2} + 6m - 24 \le 0 \Leftrightarrow - 2 \le m \le \frac{4}{3}\)

Vậy \(m \in \left[ { - 2;\frac{4}{3}} \right]\)

b) \(x = - 1\) là nghiệm của bất phương trình \(m{x^2} - 2x + 1 > 0\) khi và chỉ khi:

\(m.{\left( { - 1} \right)^2} - 2.\left( { - 1} \right) + 1 > 0 \Leftrightarrow m + 3 > 0 \Leftrightarrow m > - 3\)

Vậy khi \(m \in \left( { - 3; + \infty } \right)\)

c) \(x = \frac{5}{2}\) là nghiệm của bất phương trình \(4{x^2} + 2mx - 5m \le 0\) khi và chỉ khi:

\(4.{\left( {\frac{5}{2}} \right)^2} + 2m.\left( {\frac{5}{2}} \right) - 5m \le 0 \Leftrightarrow 25 \le 0\) (vô lí)

Vậy không có m thỏa mãn yêu cầu

d) \(x = - 2\) là nghiệm của bất phương trình \(\left( {2m - 3} \right){x^2} - \left( {{m^2} + 1} \right)x \ge 0\) khi và chỉ khi:

\(\left( {2m - 3} \right).{\left( { - 2} \right)^2} - \left( {{m^2} + 1} \right).\left( { - 2} \right) \ge 0 \Leftrightarrow 2{m^2} + 8m - 10 \ge 0 \Leftrightarrow \left[ \begin{array}{l}m \le - 5\\m \ge 1\end{array} \right.\)

Vậy \(m \in \left( { - \infty ; - 5} \right] \cup \left[ {1; + \infty } \right)\)

e) \(x = m + 1\) là nghiệm của bất phương trình \(2{x^2} + 2mx - {m^2} - 2 < 0\) khi và chỉ khi:

\(2.{\left( {m + 1} \right)^2} + 2m.\left( {m + 1} \right) - {m^2} - 2 < 0 \Leftrightarrow 3{m^2} + 6m < 0 \Leftrightarrow - 2 < x < 0\)

Vậy \(m \in \left( { - 2;0} \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6 trang 14 SBT toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6 trang 14 SBT Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 6 trang 14 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các khái niệm như tập hợp, phần tử của tập hợp, tập con, tập hợp rỗng, và các phép toán hợp, giao, hiệu, bù để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 6 trang 14 SBT Toán 10 - Chân trời sáng tạo

Bài 6 thường bao gồm các dạng bài tập sau:

  1. Xác định các tập hợp: Cho các tập hợp A, B, C, yêu cầu xác định các tập hợp con, tập hợp hợp, giao, hiệu, bù của chúng.
  2. Chứng minh đẳng thức tập hợp: Chứng minh các đẳng thức liên quan đến các phép toán trên tập hợp bằng cách sử dụng định nghĩa và các tính chất của các phép toán đó.
  3. Giải các bài toán ứng dụng: Áp dụng kiến thức về tập hợp để giải quyết các bài toán thực tế, ví dụ như bài toán về khảo sát sở thích của học sinh, bài toán về phân loại đối tượng.

Hướng dẫn giải chi tiết bài 6 trang 14 SBT Toán 10 - Chân trời sáng tạo

Để giải quyết bài 6 trang 14 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:

  • Nắm vững định nghĩa và các tính chất của các khái niệm liên quan đến tập hợp: Tập hợp, phần tử, tập con, tập hợp rỗng, hợp, giao, hiệu, bù.
  • Hiểu rõ các quy tắc và công thức liên quan đến các phép toán trên tập hợp: A ∪ B, A ∩ B, A \ B, Ac.
  • Rèn luyện kỹ năng phân tích và suy luận logic: Để xác định đúng các tập hợp và áp dụng các phép toán một cách chính xác.
  • Thực hành giải nhiều bài tập khác nhau: Để làm quen với các dạng bài tập và nâng cao kỹ năng giải toán.

Ví dụ minh họa giải bài 6 trang 14 SBT Toán 10 - Chân trời sáng tạo

Ví dụ: Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B và A ∩ B.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6} (tập hợp hợp của A và B chứa tất cả các phần tử thuộc A hoặc B).
  • A ∩ B = {3, 4} (tập hợp giao của A và B chứa tất cả các phần tử thuộc cả A và B).

Lưu ý khi giải bài 6 trang 14 SBT Toán 10 - Chân trời sáng tạo

Khi giải bài tập về tập hợp, bạn cần chú ý:

  • Sử dụng đúng ký hiệu tập hợp: {}, ∪, ∩, \, c.
  • Kiểm tra lại kết quả sau khi giải xong để đảm bảo tính chính xác.
  • Nếu gặp khó khăn, hãy tham khảo các tài liệu học tập hoặc hỏi ý kiến giáo viên, bạn bè.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về tập hợp và các phép toán trên tập hợp, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 Chân trời sáng tạo.
  • Sách bài tập Toán 10 Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về tập hợp trên YouTube.

Kết luận

Bài 6 trang 14 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10