Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 70 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải, đáp án chính xác và những lưu ý quan trọng để bạn nắm vững kiến thức.
Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, phù hợp với mọi trình độ học sinh. Hãy cùng theo dõi để hiểu rõ hơn về cách giải quyết bài toán này nhé!
Lập phương trình đường tròn (C) trong các trường hợp sau:
Đề bài
Lập phương trình đường tròn \(\left( C \right)\) trong các trường hợp sau:
a) \(\left( C \right)\) có tâm \(O\left( {0;0} \right)\) và bán kính \(R = 9\)
b) \(\left( C \right)\)có đường kính AB với \(A\left( {1;1} \right)\) và \(B\left( {3;5} \right)\)
c) \(\left( C \right)\) có tâm \(M\left( {2;3} \right)\) và tiếp xúc với đường thẳng \(3x - 4y + 9 = 0\)
d) \(\left( C \right)\) có tâm \(I\left( {3;2} \right)\) và đi qua điểm \(B\left( {7;4} \right)\)
Phương pháp giải - Xem chi tiết
Viết phương trình đường tròn tâm \(I\left( {a;b} \right)\) và bán kính R là \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)
Lời giải chi tiết
a) \(\left( C \right)\) có tâm \(O\left( {0;0} \right)\) và bán kính \(R = 9\)
Phương trình đường tròn: \({x^2} + {y^2} = {9^2} = 81\)
b) \(\left( C \right)\)có đường kính AB với \(A\left( {1;1} \right)\) và \(B\left( {3;5} \right)\)
+ I là trung điểm của AB nên \(I\left( {2;3} \right)\)
+ \(R = IA = \sqrt {{1^2} + {2^2}} = \sqrt 5 \)
+ Phương trình đường tròn: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)
c) \(\left( C \right)\) có tâm \(M\left( {2;3} \right)\) và tiếp xúc với đường thẳng \(3x - 4y + 9 = 0\)
+ \(d\left( {M,d} \right) = R = \frac{{\left| {3.2 - 4.3 + 9} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{3}{5}\)
+ Phương trình đường tròn: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = \frac{9}{{25}}\)
d) \(\left( C \right)\) có tâm \(I\left( {3;2} \right)\) và đi qua điểm \(B\left( {7;4} \right)\)
+ \(R = IB = \sqrt {{4^2} + {2^2}} = \sqrt {20} \)
+ Phương trình đường tròn: \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} = 20\)
Bài 2 trang 70 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về các phép toán vectơ, đặc biệt là phép cộng, trừ vectơ và phép nhân vectơ với một số thực để giải quyết các bài toán liên quan đến hình học.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 70 sách bài tập Toán 10 Chân trời sáng tạo hiệu quả, bạn cần nắm vững các kiến thức và kỹ năng sau:
Để cung cấp lời giải chi tiết, chúng ta cần xem xét từng câu hỏi cụ thể trong bài 2. Tuy nhiên, dưới đây là một ví dụ minh họa cách giải một dạng bài tập thường gặp:
Cho hai vectơ a và b. Tìm vectơ c sao cho c = 2a - b.
Giải:
Để tìm vectơ c, ta thực hiện phép nhân vectơ a với 2, sau đó thực hiện phép trừ vectơ b.
Giả sử a = (x1, y1) và b = (x2, y2). Khi đó:
2a = (2x1, 2y1)
c = 2a - b = (2x1 - x2, 2y1 - y2)
Khi giải bài tập về vectơ, bạn cần chú ý những điều sau:
Để học tốt môn Toán 10, bạn có thể tham khảo các tài liệu sau:
Bài 2 trang 70 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ. Hy vọng với lời giải chi tiết và những lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!