Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 21 SBT toán 10 - Chân trời sáng tạo

Giải bài 3 trang 21 SBT toán 10 - Chân trời sáng tạo

Giải bài 3 trang 21 SBT Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 3 trang 21, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Giải các phương trình bậc hai sau:

Đề bài

Giải các phương trình bậc hai sau:

a) \({x^2} - 10x + 24 \ge 0\) b) \( - 4{x^2} + 28x - 49 \le 0\)

c) \({x^2} - 5x + 1 > 0\) d) \(9{x^2} - 24x + 16 \le 0\)

e) \(15{x^2} - x - 2 < 0\) g) \( - {x^2} + 8x - 17 > 0\)

h) \( - 25{x^2} + 10x - 1 < 0\) i) \(4{x^2} + 4x + 7 \le 0\)

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 21 SBT toán 10 - Chân trời sáng tạo 1

Bước 1: Tìm nghiệm của tam thức bậc hai có trong bất đẳng thức

Bước 2: Xác định dấu của tam thức

Lời giải chi tiết

a) Tam thức \({x^2} - 10x + 24\)\(a = 1 > 0\) và hai nghiệm \({x_1} = 4;{x_2} = 6\)

Suy ra \({x^2} - 10x + 24 \ge 0\) khi và chỉ khi \(\left( { - \infty ;4} \right] \cup \left[ {6; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ;4} \right] \cup \left[ {6; + \infty } \right)\)

b) Tam thức \( - 4{x^2} + 28x - 49\)\(a = - 4 < 0\) và nghiệm kép \({x_1} = {x_2} = \frac{7}{2}\)

Suy ra \( - 4{x^2} + 28x - 49 \le 0\) với mọi \(x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

c) Tam thức \({x^2} - 5x + 1\)\(a = 1 > 0\) và hai nghiệm \({x_1} = \frac{{5 - \sqrt {21} }}{2};{x_2} = \frac{{5 + \sqrt {21} }}{2}\)

Suy ra \({x^2} - 5x + 1 > 0\) khi và chỉ khi \(\left( { - \infty ;\frac{{5 - \sqrt {21} }}{2}} \right) \cup \left( {\frac{{5 + \sqrt {21} }}{2}; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ;\frac{{5 - \sqrt {21} }}{2}} \right) \cup \left( {\frac{{5 + \sqrt {21} }}{2}; + \infty } \right)\)

d) Tam thức \(9{x^2} - 24x + 16\)\(a = 9 > 0\) và nghiệm kép \({x_1} = {x_2} = \frac{4}{3}\)

Do đó \(9{x^2} - 24x + 16 \ge 0\) với mọi \(x \in \mathbb{R}\)

Suy ra \(9{x^2} - 24x + 16 \le 0\) có nghiệm khi \(9{x^2} - 24x + 16 = 0 \Leftrightarrow x = \frac{4}{3}\)

Vậy tập nghiệm của bất phương trình là \(\left\{ {\frac{4}{3}} \right\}\)

e) Tam thức \(15{x^2} - x - 2\)\(a = 15 > 0\) và hai nghiệm \({x_1} = - \frac{1}{3};{x_2} = \frac{2}{5}\)

Suy ra \(15{x^2} - x - 2 < 0\) khi và chỉ khi \(\left( { - \frac{1}{3};\frac{2}{5}} \right)\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \frac{1}{3};\frac{2}{5}} \right)\)

g) Tam thức \( - {x^2} + 8x - 17\)\(a = - 1 < 0\)\(\Delta = - 4 < 0\)

Do đó \( - {x^2} + 8x - 17 \le 0\) với mọi \(x \in \mathbb{R}\)

Suy ra không có giá trị x thỏa mãn bất phương trình \( - {x^2} + 8x - 17 > 0\)

Vậy bất phương trình đã cho vô nghiệm

h) Tam thức \( - 25{x^2} + 10x - 1\)\(a = - 25 < 0\) và nghiệm kép \({x_1} = {x_2} = \frac{1}{5}\)

Do đó \( - {x^2} + 8x - 17 \le 0\) với mọi \(x \in \mathbb{R}\)

Suy ra \( - 25{x^2} + 10x - 1 < 0\) khi và chỉ khi \(x \ne \frac{1}{5}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{5}} \right\}\)

i) Tam thức \(4{x^2} + 4x + 7\)\(a = 4 > 0\)\(\Delta = - 96 < 0\)

Suy ra không có giá trị nào của x để \(4{x^2} + 4x + 7 \le 0\)

Vậy bất phương trình đã cho vô nghiệm

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 21 SBT toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 21 SBT Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 21 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.

Nội dung chi tiết bài 3 trang 21 SBT Toán 10 - Chân trời sáng tạo

Để giải quyết bài 3 trang 21 SBT Toán 10 Chân trời sáng tạo một cách hiệu quả, chúng ta cần nắm vững các khái niệm và công thức sau:

  • Tập hợp: Một tập hợp là một nhóm các đối tượng được xác định rõ ràng.
  • Phần tử của tập hợp: Một đối tượng thuộc tập hợp được gọi là phần tử của tập hợp đó.
  • Phép hợp (∪): Tập hợp A hợp với tập hợp B là tập hợp chứa tất cả các phần tử thuộc A hoặc thuộc B (hoặc cả hai).
  • Phép giao (∩): Tập hợp A giao với tập hợp B là tập hợp chứa tất cả các phần tử thuộc cả A và B.
  • Phép hiệu (\): Tập hợp A hiệu với tập hợp B là tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.
  • Phép bù (CA): Tập hợp bù của A là tập hợp chứa tất cả các phần tử không thuộc A.

Hướng dẫn giải chi tiết bài 3 trang 21 SBT Toán 10 - Chân trời sáng tạo

Dưới đây là hướng dẫn giải chi tiết từng phần của bài 3 trang 21 SBT Toán 10 Chân trời sáng tạo. Lưu ý rằng, tùy thuộc vào từng dạng bài cụ thể, phương pháp giải có thể khác nhau. Tuy nhiên, các bước cơ bản thường bao gồm:

  1. Xác định các tập hợp: Đọc kỹ đề bài để xác định rõ các tập hợp được đề cập.
  2. Xác định các phần tử: Liệt kê các phần tử thuộc mỗi tập hợp.
  3. Thực hiện các phép toán: Áp dụng các phép toán hợp, giao, hiệu, bù để tìm tập hợp kết quả.
  4. Kiểm tra kết quả: Đảm bảo rằng kết quả tìm được phù hợp với đề bài và các tính chất của tập hợp.

Ví dụ minh họa

Ví dụ: Cho A = {1, 2, 3} và B = {2, 4, 5}. Tìm A ∪ B, A ∩ B, A \ B, và B \ A.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5}
  • A ∩ B = {2}
  • A \ B = {1, 3}
  • B \ A = {4, 5}

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về tập hợp, bạn có thể thực hành với các bài tập sau:

  • Bài 1: Cho A = {a, b, c} và B = {b, d, e}. Tìm A ∪ B, A ∩ B, A \ B, và B \ A.
  • Bài 2: Cho A = {1, 3, 5, 7} và B = {2, 4, 6, 8}. Tìm A ∪ B, A ∩ B, A \ B, và B \ A.
  • Bài 3: Cho A = {x | x là số chẵn nhỏ hơn 10} và B = {x | x là số lẻ nhỏ hơn 10}. Tìm A ∪ B, A ∩ B, A \ B, và B \ A.

Lời khuyên khi giải bài tập về tập hợp

Để giải bài tập về tập hợp một cách hiệu quả, bạn nên:

  • Nắm vững các khái niệm và công thức cơ bản về tập hợp.
  • Đọc kỹ đề bài và xác định rõ các tập hợp được đề cập.
  • Sử dụng sơ đồ Venn để minh họa các tập hợp và các phép toán trên tập hợp.
  • Kiểm tra kết quả cẩn thận để đảm bảo tính chính xác.

Kết luận

Bài 3 trang 21 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng, với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 10