Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 55 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 3 trang 55 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 3 trang 55 Sách bài tập Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 55 sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Tìm công thức của hàm số có đồ thị vẽ được ở bài tập 2

Đề bài

Tìm công thức của hàm số có đồ thị vẽ được ở bài tập 2

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 55 sách bài tập toán 10 - Chân trời sáng tạo 1

Bước 1: Đặt công thức của hàm số theo dạng tổng quát \(y = a{x^2} + bx + c\)

Bước 2: Thay các điểm mà hàm số đi qua và sử dụng các tính chất của hàm số bậc hai để xác định a, b, c

Lời giải chi tiết

Gọi công thức tổng quát của hàm số bậc hai có dạng \(y = a{x^2} + bx + c\) với a, b, c là các số thực và a khác 0

Đồ thị hàm số có đỉnh \(S\left( { - 1; - 3} \right)\) nên ta có : \( - 1 = - \frac{b}{{2a}} \Rightarrow b = 2a\) (1)

Mặt khác đồ thị hàm số cắt trục tung tại điểm \(C\left( {0; - 1} \right)\)nên \(c = - 1\) (2)

Đồ thị hàm số đi qua điểm S nên thay tọa độ điểm S vào ta được phương trình:

\( - 3 = a{\left( { - 1} \right)^2} + b\left( { - 1} \right) + c \Rightarrow a - b + c = - 3\) (3)

Từ (1), (2) và (3) ta tìm được \(a = 2,b = 4\) và \(c = - 1\)

Vậy hàm số cần tìm có công thức là \(y = 2{x^2} + 4x - 1\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 55 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 55 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 55 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế.

Nội dung bài tập

Bài 3 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của parabol (a, b, c).
  • Tìm tọa độ đỉnh của parabol.
  • Tìm phương trình trục đối xứng của parabol.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.

Phương pháp giải bài tập

Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Công thức tính tọa độ đỉnh của parabol: xđỉnh = -b/(2a), yđỉnh = -Δ/(4a) (với Δ = b2 - 4ac).
  2. Phương trình trục đối xứng: x = -b/(2a).
  3. Xác định hệ số a: Nếu a > 0 thì parabol có dạng chữ U, nếu a < 0 thì parabol có dạng chữ ∩.
  4. Sử dụng các tính chất của hàm số bậc hai: Hàm số đồng biến trên khoảng (-b/(2a), +∞) nếu a > 0 và trên khoảng (-∞, -b/(2a)) nếu a < 0.

Ví dụ minh họa

Bài toán: Tìm tọa độ đỉnh và phương trình trục đối xứng của parabol y = x2 - 4x + 3.

Giải:

  • a = 1, b = -4, c = 3.
  • Tọa độ đỉnh: xđỉnh = -(-4)/(2*1) = 2, yđỉnh = -( (-4)2 - 4*1*3 )/(4*1) = - (16 - 12)/4 = -1. Vậy đỉnh của parabol là (2, -1).
  • Phương trình trục đối xứng: x = 2.

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số bậc hai, bạn cần chú ý các điểm sau:

  • Đọc kỹ đề bài để xác định đúng yêu cầu của bài toán.
  • Sử dụng đúng công thức và các tính chất của hàm số bậc hai.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải toán.

Ứng dụng của hàm số bậc hai trong thực tế

Hàm số bậc hai có nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính quỹ đạo của vật ném.
  • Tính diện tích của các hình học.
  • Mô tả sự thay đổi của các đại lượng vật lý.

Tổng kết

Bài 3 trang 55 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc hai. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Công thứcMô tả
xđỉnh = -b/(2a)Hoành độ đỉnh của parabol
yđỉnh = -Δ/(4a)Tung độ đỉnh của parabol
x = -b/(2a)Phương trình trục đối xứng

Tài liệu, đề thi và đáp án Toán 10