Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách Giải bài 4 trang 55 sách bài tập Toán 10 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của vấn đề.
Tìm công thức hàm số bậc hai biết:
Đề bài
Tìm công thức hàm số bậc hai biết:
a) Đồ thị hàm số đi qua 3 điểm \(A\left( {1; - 3} \right),B\left( {0; - 2} \right),C\left( {2; - 10} \right)\)
b) Đồ thị hàm số có trục đối xứng là đường thẳng \(x = 3\), cắt trục tung tại điểm có tung độ bằng \( - 16\) và một trong hai giao điểm với trục hoành có hoành độ là \( - 2\)
Phương pháp giải - Xem chi tiết
a) Bước 1: Đặt phương trình dạng tổng quát \(y = a{x^2} + bx + c\)
Bước 2: Thay tọa độ các điểm mà đồ thị hàm số đi qua, lập hệ phương trình và xác định a, b, c
b) Sử dụng các tính chất của đồ thị hàm số bậc 2 và xác định các hệ số a, b, c
Lời giải chi tiết
a) Giả sử phương trình bậc 2 cần tìm có dạng tổng quát \(y = a{x^2} + bx + c\)
Đồ thị hàm số cắt trục tung tại điểm \(B\left( {0; - 2} \right)\) nên \(c = - 2\). Vậy phương trình có dạng \(y = a{x^2} + bx - 2\)
Mặt khác đồ thị hàm số đi qua điểm \(A\left( {1; - 3} \right),C\left( {2; - 10} \right)\) thay tọa độ hai điểm vào phương trình \(y = a{x^2} + bx - 2\)ta có hệ sau:
\(\begin{array}{l}\left\{ \begin{array}{l} - 3 = a{.1^2} + b - 2\\ - 10 = a{.2^2} + b.2 - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = - 1\\4{\rm{a}} + 2b = - 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = 2\end{array} \right.\\\end{array}\)
Vậy hàm số cần tìm có công thức là \(y = - 3{x^2} + 2x - 2\)
b) Giả sử phương trình bậc 2 cần tìm có dạng tổng quát \(y = a{x^2} + bx + c\)
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \( - 16\) suy ra \(c = - 16\)
Suy ra hàm số có công thức dạng \(y = a{x^2} + bx - 16\)
Đồ thị hàm số có trục đối xứng là đường thẳng \(x = 3 \Rightarrow - \frac{b}{{2a}} = 3 \Rightarrow b = - 6{\rm{a}}\) (1)
Mặt khác đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \( - 2\)nên \(0 = a{\left( { - 2} \right)^2} + b\left( { - 2} \right) - 16 \Leftrightarrow 4a - 2b = 16\) (2)
Từ (1) và (2) ta tìm được \(a = 1,b = - 6\)
Vậy hàm số cần tìm có dạng \(y = {x^2} - 6x - 16\)
Bài 4 trang 55 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 55 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Ví dụ: Cho hai vectơ \vec{a}" và \vec{b}". Tìm vectơ \vec{c}" sao cho \vec{c} = 2\vec{a} - \vec{b}".
Giải:
Để tìm vectơ \vec{c}", ta thực hiện phép toán 2\vec{a} - \vec{b}". Giả sử \vec{a} = (x_1, y_1)" và \vec{b} = (x_2, y_2)". Khi đó:
\vec{c} = 2(x_1, y_1) - (x_2, y_2) = (2x_1 - x_2, 2y_1 - y_2)"
Khi giải các bài tập về vectơ, bạn cần chú ý đến các yếu tố sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể thực hiện các bài tập sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 4 trang 55 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt!