Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 56 sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài tập này với mục tiêu giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Giả sử hàm số bậc hai mô phỏng vòm phía trong một trụ của cầu nhật tân là:
Đề bài
Giả sử hàm số bậc hai mô phỏng vòm phía trong một trụ của cầu nhật tân là:
\(y = f\left( x \right) = - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x\) (đơn vị đo: mét)
a) Hãy tính chiêu dài đoạn dây dọi sử dụng nếu khoảng cách từ chân của trụ cầu đễn quả nặng là 30 cm
b) Hãy tính khoảng cách từ chân trụ cầu đến quả nặng nếu biết chiều dài đoạn dây dọi sử dụng là 15 m
Phương pháp giải - Xem chi tiết
Bước 1: Xác định x, y từ yêu cầu bài toán
Bước 2: Thay tọa đồ vừa tìm được vào phương trình và tìm giá trị còn lại
Lời giải chi tiết
Mô phỏng các giả thiết bài toán bằng hình vẽ dưới đây
a) Khoảng cách từ chân trụ của cầu tới quả dọi là 30 cm tương ứng với \(OA = 0,3 \Rightarrow {x_B} = 0,3\), chiều dài dây dọi tương ứng với \({y_B}\)
Thay \(x = 0,3\)vào phương trình \(y = f\left( x \right) = - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x\) ta tìm được:
\(y = f\left( {0,3} \right) = - \frac{{187}}{{856}}{\left( {0,3} \right)^2} + \frac{{8041}}{{856}}\left( {0,3} \right) \simeq 2,8\)
Vậy khi khoảng cách từ chân trụ của cầu tới quả dọi là 30 cm thì chiều dại dây dọi gần bằng 2,8 m
b) Chiều dài dây dọi tương ứng với \({y_B} = 15\) và khoảng cách từ chân trụ của cầu tới quả dọi tương ứng với \({x_B}\)
Thay \({y_B} = 15\)vào phương trình \(y = f\left( x \right) = - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x\) ta có:
\(15 = - \frac{{187}}{{856}}{\left( {{x_B}} \right)^2} + \frac{{8041}}{{856}}\left( {{x_B}} \right) \Rightarrow \left[ \begin{array}{l}{x_B} \simeq 1,6\\{x_B} \simeq 41,3\end{array} \right.\)
Vậy khoảng cách từ chân trụ cầu đến quả nặng khi chiều dài dây dọi có thể là 1,6m và 41,3 m tính từ chân cầu bên trái
Bài 7 trang 56 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải bài 7 trang 56 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Ví dụ 1: Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính a + b.
Giải:a + b = (1 + (-3); 2 + 4) = (-2; 6)
Ví dụ 2: Cho vectơ a = (2; -1) và số thực k = 3. Tính ka.
Giải:ka = (3 * 2; 3 * (-1)) = (6; -3)
Khi giải các bài tập về vectơ, bạn cần chú ý đến các yếu tố sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể làm thêm các bài tập sau:
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 7 trang 56 sách bài tập Toán 10 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!