Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 13 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 3 trang 13 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 3 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!

Điền kí hiệu thích hợp vào chỗ chấm

Đề bài

Điền kí hiệu \(\left( { \in , \notin , \subset , \not\subset , = } \right)\) thích hợp vào chỗ chấm

a) \(0...\left\{ {0;1;2} \right\}\)

b) \(\left\{ {0;1} \right\}...\mathbb{Z}\)

c) \(0...\left\{ {x\left| {{x^2} = 0} \right.} \right\}\)

d) \(\left\{ 0 \right\}...\left\{ {x\left| {{x^2}} \right. = x} \right\}\)

e) \(\emptyset ...\left\{ {x \in \mathbb{R}\left| {{x^2} + 4 = 0} \right.} \right\}\)

g) \(\left\{ {4;1} \right\}...\left\{ {x\left| {{x^2} - 5x + 4 = 0} \right.} \right\}\)

h) \(\left\{ {n;a;m} \right\}...\left\{ {m;a;n} \right\}\)

i) \(\left\{ {nam} \right\}...\left\{ {n;a;m} \right\}\)

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 13 sách bài tập toán 10 - Chân trời sáng tạo 1

+) Tập hợp không có phần tử nào gọi là tập hợp rỗng, kí hiệu \(\emptyset \)

+) Phần tử a thuộc tập hợp A thì ta viết \(a \in A\), ngược lại \(a \notin A\)

+) A là tập hợp con của B nếu mọi phần tử của A đều là phần tử của B, kí hiệu \(A \subset B\), ngược lại \(A \not\subset B\)

+) Hai tập hợp A B gọi là bằng nhau nếu \(A \subset B\)và \(B \subset A\)

Lời giải chi tiết

a) Tập hợp \(\left\{ {0;1;2} \right\}\) chứa 0 nên \(0 \in \left\{ {0;1;2} \right\}\)

b) \(\left\{ {0;1} \right\}\)là một tập hợp và nó là một tập con của tập hợp số nguyên nên \(\left\{ {0;1} \right\} \subset \mathbb{Z}\)

c) \({x^2} = 0\) chỉ có nghiệm duy nhất là \(x = 0\) và 0 là một phần tử nên \(0 \in \left\{ {x\left| {{x^2} = 0} \right.} \right\}\)

d) Phương trình \({x^2} = x\) có hai nghiệm là 0 và 1, mặt khác \(\left\{ 0 \right\}\)là một tập hợp nên \(\left\{ 0 \right\} \subset \left\{ {x\left| {{x^2}} \right. = x} \right\}\)

e) Phương trình \({x^2} + 4 = 0\) vô nghiệm nên \(\emptyset = \left\{ {x \in \mathbb{R}\left| {{x^2} + 4 = 0} \right.} \right\}\)

g) Ta có: \({x^2} - 5x + 4 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right) = 0\) có hai nghiệm là 1 và 4 nên \(\left\{ {4;1} \right\} = \left\{ {x\left| {{x^2} - 5x + 4 = 0} \right.} \right\}\)

h) Các phần tử trong hai tập hợp giống nhau nên \(\left\{ {n;a;m} \right\} = \left\{ {m;a;n} \right\}\)

i) Hai tập hợp này có các phần tử hoàn toàn khác nhau nên \(\left\{ {nam} \right\} \not\subset \left\{ {n;a;m} \right\}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 13 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 10 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp số. Bài tập này yêu cầu học sinh phải hiểu rõ định nghĩa, ký hiệu, và các quy tắc liên quan đến tập hợp để có thể giải quyết một cách chính xác.

Nội dung bài 3 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo

Bài 3 thường bao gồm các dạng bài tập sau:

  • Xác định các phần tử của tập hợp: Yêu cầu học sinh liệt kê các phần tử thuộc một tập hợp cho trước, hoặc xác định một tập hợp dựa trên các điều kiện cho trước.
  • Thực hiện các phép toán trên tập hợp: Bài tập về hợp, giao, hiệu, phần bù của các tập hợp.
  • Chứng minh các đẳng thức tập hợp: Sử dụng các tính chất của phép toán trên tập hợp để chứng minh các đẳng thức.
  • Giải các bài toán ứng dụng: Áp dụng kiến thức về tập hợp để giải quyết các bài toán thực tế.

Lời giải chi tiết bài 3 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 3 trang 13, chúng ta sẽ đi vào phân tích từng câu hỏi cụ thể. Dưới đây là lời giải chi tiết cho từng phần của bài tập:

Câu a: (Ví dụ minh họa)

Cho tập hợp A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A ∪ B.

Lời giải:

A ∪ B = {1, 2, 3, 4, 5, 6, 7}.

Giải thích: Hợp của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc A hoặc B (hoặc cả hai).

Câu b: (Ví dụ minh họa)

Cho tập hợp A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A ∩ B.

Lời giải:

A ∩ B = {3, 4, 5}.

Giải thích: Giao của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc cả A và B.

Câu c: (Ví dụ minh họa)

Cho tập hợp A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A \ B.

Lời giải:

A \ B = {1, 2}.

Giải thích: Hiệu của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.

Mẹo giải bài tập về tập hợp

Để giải tốt các bài tập về tập hợp, các em cần lưu ý những điều sau:

  • Nắm vững định nghĩa và ký hiệu: Hiểu rõ ý nghĩa của các ký hiệu như ∪, ∩, \, ∅, ...
  • Sử dụng sơ đồ Venn: Sơ đồ Venn là một công cụ hữu ích để minh họa các phép toán trên tập hợp.
  • Áp dụng các tính chất của phép toán: Ví dụ: A ∪ B = B ∪ A, A ∩ B = B ∩ A, ...
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng giải.

Tài liệu tham khảo

Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 10
  • Các trang web học Toán online uy tín
  • Các video bài giảng trên YouTube

Kết luận

Bài 3 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo là một bài tập quan trọng giúp các em củng cố kiến thức về tập hợp. Hy vọng với lời giải chi tiết và những mẹo giải bài tập trên, các em sẽ tự tin hơn trong quá trình học tập. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 10