Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 59 sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức.
a) Tính độ dài ba cạnh của tam giác ABC và số đo của góc B b) Tìm tọa độ tâm I của đường tròn ngoại tiếp của tam giác ABC
Đề bài
Cho tam giác ABC có tọa độ các đỉnh là \(A\left( {1;3} \right),B\left( {3;1} \right),C\left( {6;4} \right)\)
a) Tính độ dài ba cạnh của tam giác ABC và số đo của góc B
b) Tìm tọa độ tâm I của đường tròn ngoại tiếp của tam giác ABC
Phương pháp giải - Xem chi tiết
Cho hai vectơ \(\overrightarrow a = \left( {{a_1},{a_2}} \right),\overrightarrow b = \left( {{b_1},{b_2}} \right)\) và hai điểm \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\). Ta có:
+ \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} + {{\left( {{y_A} - {y_B}} \right)}^2}} \)
+ \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}} = \frac{{{a_1}{a_2} + {a_2}{b_2}}}{{\sqrt {{a_1}^2 + {a_2}^2} .\sqrt {{b_1}^2 + {b_2}^2} }}\)
- Tâm I của đường tròn ngoại tiếp tam giác ABC là điểm cách đều ba điểm A, B, C
Lời giải chi tiết
Cho tam giác ABC có tọa độ các đỉnh là \(A\left( {1;3} \right),B\left( {3;1} \right),C\left( {6;4} \right)\)
a) Tính độ dài ba cạnh của tam giác ABC và số đo của góc B
\(\begin{array}{l}\overrightarrow {AB} = \left( {2; - 2} \right) \Rightarrow AB = \sqrt {{2^2} + {{\left( { - 2} \right)}^2}} = 2\sqrt 2 \\\overrightarrow {BC} = \left( {3;3} \right) \Rightarrow BC = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 \\\overrightarrow {AC} = \left( {5;1} \right) \Rightarrow AC = \sqrt {{5^2} + {1^2}} = \sqrt {26} \end{array}\)
+ \(cos\left( B \right) = \left| {cos\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)} \right| = \frac{{2.3 - 2.3}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{3^2} + {3^2}} }} = 0 \Rightarrow \widehat B = {90^ \circ }\)
b) Tam giác ABC vuông tại B có I là tâm của đường tròn ngoại tiếp của tam giác ABC nên I là trung điểm của AC
\( \Rightarrow I\left( {\frac{{1 + 6}}{2};\frac{{3 + 4}}{2}} \right) \Rightarrow I\left( {\frac{7}{2};\frac{7}{2}} \right)\)
Bài 4 trang 59 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 59 sách bài tập Toán 10 Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cho là y = x2 - 4x + 3.
Bước 1: a = 1, b = -4, c = 3.
Bước 2: Δ = (-4)2 - 4 * 1 * 3 = 16 - 12 = 4.
Bước 3: Vì Δ > 0, phương trình có hai nghiệm phân biệt.
Bước 4: xđỉnh = -(-4) / (2 * 1) = 2, yđỉnh = -4 / (4 * 1) = -1.
Bước 5: Tọa độ đỉnh của parabol là (2, -1).
Bước 6: Phương trình trục đối xứng là x = 2.
Bước 7: Hàm số nghịch biến trên khoảng (-∞, 2) và đồng biến trên khoảng (2, +∞).
Để giải nhanh các bài tập về hàm số bậc hai, bạn nên:
Bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 10:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 4 trang 59 sách bài tập Toán 10 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!