Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 10 trang 59 sách bài tập Toán 10 - Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải, đáp án chính xác và giải thích từng bước để giúp các em học sinh hiểu rõ bản chất của bài toán.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để nắm vững kiến thức Toán 10 nhé!
Tính góc giữa hai vectơ
Đề bài
Tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) trong các trường hợp sau:
a) \(\overrightarrow a = \left( {1; - 4} \right),\overrightarrow b = \left( {5;3} \right)\)
b) \(\overrightarrow a = \left( {4;3} \right),\overrightarrow b = \left( {6;0} \right)\)
c) \(\overrightarrow a = \left( {2;2\sqrt 3 } \right),\overrightarrow b = \left( { - 3;\sqrt 3 } \right)\)
Phương pháp giải - Xem chi tiết
Cho hai vectơ \(\overrightarrow a = \left( {{a_1},{a_2}} \right),\overrightarrow b = \left( {{b_1},{b_2}} \right)\). Ta có:
+ \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}} = \frac{{{a_1}{a_2} + {a_2}{b_2}}}{{\sqrt {{a_1}^2 + {a_2}^2} .\sqrt {{b_1}^2 + {b_2}^2} }}\)
Lời giải chi tiết
a) \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{1.5 - 4.3}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} .\sqrt {{5^2} + {3^2}} }} = \frac{{ - 7\sqrt 2 }}{{34}} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) \approx {106^ \circ }56'\)
b) \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{4.6 + 3.0}}{{\sqrt {{4^2} + {6^2}} .\sqrt {{3^2} + {0^2}} }} = \frac{4}{5} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) \approx {36^ \circ }52'\)
c) \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{2.\left( { - 3} \right) + 2\sqrt 3 .\sqrt 3 }}{{\sqrt {{2^2} + {{\left( {2\sqrt 3 } \right)}^2}} .\sqrt {{{\left( { - 3} \right)}^2} + {{\left( {\sqrt 3 } \right)}^2}} }} = 0 \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) \approx {90^ \circ }\)
Bài 10 trang 59 sách bài tập Toán 10 - Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học và đại số.
Bài 10 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 10 trang 59 sách bài tập Toán 10 - Chân trời sáng tạo hiệu quả, học sinh cần nắm vững các phương pháp sau:
(Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 10, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)
Giải:
Vectơ a + b = (1 + (-3); 2 + 4) = (-2; 6)
Kết luận: Vectơ a + b = (-2; 6)
Giải:
Vectơ k.a = (3 * 2; 3 * (-1)) = (6; -3)
Kết luận: Vectơ k.a = (6; -3)
Ngoài sách giáo khoa và sách bài tập, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 10 trang 59 sách bài tập Toán 10 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ. Bằng cách nắm vững các phương pháp giải và luyện tập thường xuyên, các em sẽ tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong môn Toán.