Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 13 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 4 trang 13 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 4 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 13 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, hỗ trợ bạn giải quyết mọi khó khăn trong môn Toán.

Điền kí hiệu thích hợp vào chỗ chấm

Đề bài

Điền kí hiệu \(\left( { \subset , \supset , = } \right)\) thích hợp vào chỗ chấm

a) \(\left\{ {x\left| {x\left( {x - 1} \right)\left( {x + 1} \right) = 0} \right.} \right\}...\left\{ {x\left| {\left| x \right| < 2,x \in \mathbb{Z}} \right.} \right\}\)

b) \(\{3;6;9\}...\{ x \in \mathbb{N} | x\) là ước của 18 \(\}\)

c) \(\left\{ {x\left| {x = 5k;k \in } \right.} \right\}...\{ x \in \mathbb{N} | x\) là bội của 5 \(\}\)

d) \(\left\{ {4k\left| {k \in \mathbb{N}} \right.} \right\}...\left\{ {x\left| {x = 2m,m \in \mathbb{N}} \right.} \right\}\)

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 13 sách bài tập toán 10 - Chân trời sáng tạo 1

Bước 1: Xác định tập hợp cần so sánh

Bước 2: So sánh hai tập hợp

+) A là tập hợp con của B nếu mọi phần tử của A đều là phần tử của B, kí hiệu \(A \subset B\), ngược lại \(A \not\subset B\)

+) Hai tập hợp A B gọi là bằng nhau nếu \(A \subset B\)và \(B \subset A\)

Lời giải chi tiết

a) Tập hợp \(\left\{ {x\left| {x\left( {x - 1} \right)\left( {x + 1} \right) = 0} \right.} \right\}\) có các phần tử là \(\left\{ { - 1;0;1} \right\}\)

Tập hợp \(\left\{ {x\left| {\left| x \right| < 2,x \in \mathbb{Z}} \right.} \right\}\) có các phần tử là \(\left\{ { - 1;0;1} \right\}\)

Suy ra \(\left\{ {x\left| {x\left( {x - 1} \right)\left( {x + 1} \right) = 0} \right.} \right\} = \left\{ {x\left| {\left| x \right| < 2,x \in \mathbb{Z}} \right.} \right\}\)

b) \(\{ x \in \mathbb{N} | x\) là ước của 18 \(\} = \left\{ {1;2;3;6;9;18} \right\} \supset \{3;6;9\}\)

Suy ra \(\{3;6;9\} \subset \{ x \in \mathbb{N} | x\) là ước của 18 \(\}\)

c) Tập hợp \(\{ x \in \mathbb{N}| x\) là bội của 5\(\}\) viết dưới dạng đặc trưng có dạng là\(\left\{ {x\left| {x = 5k;k \in \mathbb{N}} \right.} \right\}\)

Suy ra \(\left\{ {x\left| {x = 5k;k \in \mathbb{N}} \right.} \right\} = \)\(\{ x \in \mathbb{N}| x\) là bội của 5\(\}\) 

d) Tập hợp \(\left\{ {4k\left| {k \in \mathbb{N}} \right.} \right\}\) là tập hợp các số tự nhiên là bội của 4

Tập hợp \(\left\{ {x\left| {x = 2m,m \in \mathbb{N}} \right.} \right\}\) là tập hợp các số tự nhiên là bội của 2

Mà mọi số chia hết cho 4 đều chia hết cho 2

Suy ra \(\left\{ {4k\left| {k \in \mathbb{N}} \right.} \right\} \supset \left\{ {x\left| {x = 2m,m \in \mathbb{N}} \right.} \right\}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4 trang 13 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4 trang 13 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 4 trang 13 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các khái niệm như tập hợp, phần tử của tập hợp, tập con, tập rỗng, và các phép toán hợp, giao, hiệu, bù để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 4 trang 13

Bài 4 thường bao gồm các dạng bài tập sau:

  1. Xác định các tập hợp: Cho các tập hợp A, B, C, yêu cầu xác định các tập hợp con, tập hợp bằng nhau, hoặc kiểm tra một phần tử có thuộc một tập hợp hay không.
  2. Thực hiện các phép toán trên tập hợp: Tính A ∪ B, A ∩ B, A \ B, CA (tập bù của A trong tập U).
  3. Chứng minh đẳng thức tập hợp: Sử dụng các tính chất của phép hợp, giao, hiệu, bù để chứng minh các đẳng thức tập hợp.
  4. Giải các bài toán ứng dụng: Áp dụng kiến thức về tập hợp để giải quyết các bài toán thực tế.

Hướng dẫn giải chi tiết

Để giải bài 4 trang 13 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần:

  • Nắm vững định nghĩa: Hiểu rõ các khái niệm về tập hợp, phần tử, tập con, tập rỗng, và các phép toán trên tập hợp.
  • Sử dụng các ký hiệu toán học: Thành thạo việc sử dụng các ký hiệu toán học để biểu diễn các tập hợp và các phép toán.
  • Phân tích bài toán: Đọc kỹ đề bài, xác định các tập hợp đã cho và yêu cầu của bài toán.
  • Áp dụng các công thức: Sử dụng các công thức và tính chất của các phép toán trên tập hợp để giải quyết bài toán.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ: Cho A = {1, 2, 3, 4}, B = {3, 4, 5, 6}. Tính A ∪ B và A ∩ B.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6} (tập hợp chứa tất cả các phần tử thuộc A hoặc B)
  • A ∩ B = {3, 4} (tập hợp chứa tất cả các phần tử thuộc cả A và B)

Lưu ý quan trọng

Khi giải các bài toán về tập hợp, bạn cần chú ý:

  • Thứ tự của các phần tử trong tập hợp không quan trọng.
  • Một phần tử không thể xuất hiện hai lần trong cùng một tập hợp.
  • Tập rỗng là tập hợp không chứa phần tử nào, ký hiệu là ∅.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 10 Chân trời sáng tạo hoặc trên các trang web học toán online.

Kết luận

Bài 4 trang 13 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn hiểu rõ hơn về tập hợp và các phép toán trên tập hợp. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải quyết bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 10