Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách Giải bài 3 trang 27 sách bài tập Toán 10 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập mới. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, logic và kèm theo các giải thích chi tiết để bạn có thể hiểu rõ bản chất của vấn đề.
Biểu diễn miền nghiệm của bất phương trình sau trên mặt phẳng Oxy
Đề bài
Biểu diễn miền nghiệm của bất phương trình sau trên mặt phẳng Oxy
a) \(3x + 2y < x - y + 8\)
b) \(2\left( {x - 1} \right) + 3\left( {y - 2} \right) > 2\)
Phương pháp giải - Xem chi tiết
Bước 1: Rút gọn về dạng bất phương trình bậc nhất hai ẩn
Bước 2: Vẽ đường thẳng của phương trình \(2x - 5y + 10 = 0\)
Bước 3: Xét 1 điểm bất kỳ thay vào bất phương trình và kết luận
Lời giải chi tiết
a) \(3x + 2y < x - y + 8 \Leftrightarrow 2x + 3y - 8 < 0\)
Vẽ đường thẳng \({d_1}:2x + 3y - 8 = 0\) đi qua hai điểm \(A\left( {1;2} \right)\) và \(B\left( {4;0} \right)\)
Xét gốc tọa độ \(O\left( {0;0} \right)\)
Ta thấy \(O \notin {d_1}\) và \(2.0 + 3.0 - 8 = - 8 < 0\). Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \({d_1}\)vàchứa gốc tọa độ O (miền không gạch chéo như hình dưới)
b)
Vẽ đường thẳng 2x + 3y = 10.
Cho x = 0, khi đó 2 . 0 + 3y = 10, suy ra \(y = \frac{{10}}{3}\)
Cho y = 0, khi đó 2x + 3 . 0 = 10, suy ra x = 5.
Do đó, đường thẳng 2x + 3y = 10 đi qua hai điểm \(\left( {0;\frac{{10}}{3}} \right)\) và (5; 0)
Lấy điểm O(0; 0) không thuộc đường thẳng 2x + 3y = 10.
Ta có: 2 . 0 + 3 . 0 = 0 < 10, do đó tọa độ điểm O không thỏa mãn bất phương trình 2x + 3y > 10.
Vậy miền nghiệm của bất phương trình 2x + 3y > 10 là nửa mặt phẳng có bờ là đường thẳng 2x + 3y = 10, không chứa gốc O và không kể đường thẳng 2x + 3y = 10 (miền không bị gạch trong hình dưới đây).
Bài 3 trang 27 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để xác định các tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.
Để giải quyết bài 3 trang 27 một cách hiệu quả, chúng ta cần nắm vững các khái niệm và tính chất sau:
Bài 3 thường bao gồm nhiều câu hỏi nhỏ, mỗi câu hỏi yêu cầu thực hiện một phép toán trên tập hợp hoặc chứng minh một đẳng thức. Dưới đây là hướng dẫn giải chi tiết cho từng phần:
Để xác định tập hợp A ∪ B, bạn cần liệt kê tất cả các phần tử thuộc tập hợp A hoặc tập hợp B (hoặc cả hai). Lưu ý rằng mỗi phần tử chỉ được liệt kê một lần.
Để xác định tập hợp A ∩ B, bạn cần liệt kê tất cả các phần tử thuộc cả tập hợp A và tập hợp B.
Để xác định tập hợp A \ B, bạn cần liệt kê tất cả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B.
Để xác định tập hợp B \ A, bạn cần liệt kê tất cả các phần tử thuộc tập hợp B nhưng không thuộc tập hợp A.
Để chứng minh đẳng thức này, bạn cần chứng minh rằng mọi phần tử thuộc A ∪ B đều thuộc B ∪ A và ngược lại. Bạn có thể sử dụng định nghĩa của phép hợp để chứng minh điều này.
Giả sử A = {1, 2, 3} và B = {2, 4, 5}. Khi đó:
Để giải nhanh các bài tập về tập hợp, bạn nên:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập hoặc trên các trang web học toán online.
Hy vọng rằng hướng dẫn chi tiết này đã giúp bạn hiểu rõ cách Giải bài 3 trang 27 sách bài tập Toán 10 - Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!