Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 58 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 1 trang 58 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 1 trang 58 Sách bài tập Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 58 sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập mới. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Ta có bảng giá trị của hàm cầu đối với sản phẩm A theo đơn giá của sản phẩm A như sau:

Đề bài

Ta có bảng giá trị của hàm cầu đối với sản phẩm A theo đơn giá của sản phẩm A như sau:

Đơn giá sản phẩm A (đơn vị: Nghìn đồng)

10

20

40

70

90

Lượng cầu (nhu cầu về số sản phẩm)

338

288

200

98

50

a) Giả sử hàm cầu là một hàm số bậc hai theo đơn giá x , hãy viết công thức của hàm này, biết rằng \(c = 392\)

b) Chứng tỏ rằng hàm số có thể viết thành dạng \(y = f\left( x \right) = a{\left( {b - x} \right)^2}\)

c) Giả sử hàm cầu này lấy mọi giá trị trên đoạn \(\left[ {0;100} \right]\), hãy tính lượng cầu khi đơn giá sản phẩm A là 30, 50, 100

d) Cùng giả thiết với câu c) nếu lượng cầu là 150 sản phẩm thì đơn giá sản phẩm A là khoảng bao nhiêu (đơn vị: nghìn đồng)

Lời giải chi tiết

a) Theo giả thiết ta có hàm cầu có công thức tổng quát như sau:

\(y = f\left( x \right) = a{x^2} + bx + 392\) với a, b là số thực và a khác 0

Thay các cặp số từ bảng đã cho ta có hệ phương trình

\(\left\{ \begin{array}{l}338 = a{.10^2} + b.10 + 392\\288 = a{.20^2} + b.20 + 392\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}100a + 10b = - 54\\400a + 20b = - 104\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0,02\\b = - 5,6\end{array} \right.\)

Vậy hàm cầu đã cho có công thức là \(y = f\left( x \right) = 0,02{x^2} - 5,6x + 392\)

b) Từ công thức đã tìm được câu a) ta có:

\(\begin{array}{l}y = f\left( x \right) = 0,02{x^2} - 5,6x + 392 = 0.02\left( {{x^2} - 2.140x + {{140}^2}} \right)\\ = 0,02{\left( {140 - x} \right)^2}\end{array}\) (đpcm)

c) Thay các đơn giá 30, 50, 100 tương ứng các giá trị x vào hàm cầu ta tính được lượng cầu như sau:

\(f\left( {30} \right) = 0,02{\left( {30} \right)^2} - 5,6.30 + 392 = 242\)

\(f\left( {50} \right) = 0,02{\left( {50} \right)^2} - 5,6.50 + 392 = 162\)

\(f\left( {100} \right) = 0,02{\left( {100} \right)^2} - 5,6.100 + 392 = 32\)

Vậy các lương cầu tứng ứng với các mức giá 30, 50, 100 (nghìn đồng) là 242, 162, 32 sản phẩm

d) Thay lượng cầu tương ứng với giá trị y ta tìm được x tương ứng (điều kiện \(x > 0\))

Thay \(y = 150\) vào phương trình hàm cầu ta có:

\(f\left( x \right) = 0,02{x^2} - 5,6x + 392 = 150 \Leftrightarrow {x_1} \simeq 226,6;{x_2} \simeq 53,4\)

Vậy khi lượng cầu là 150 sản phẩm thì đơn giá của 1 sản phẩm có thể gần bằng 53,4 (nghìn đồng) hoặc 226,6 (nghìn đồng)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 1 trang 58 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 10 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 1 trang 58 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 1 trang 58 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các khái niệm như tập hợp, phần tử của tập hợp, tập con, tập rỗng, và các phép toán hợp, giao, hiệu, bù để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Liệt kê các phần tử của tập hợp: Cho một tập hợp được mô tả bằng tính chất đặc trưng, yêu cầu liệt kê các phần tử thuộc tập hợp đó.
  • Xác định mối quan hệ giữa các tập hợp: Cho hai hoặc nhiều tập hợp, yêu cầu xác định xem tập hợp nào là tập con của tập hợp nào, hoặc kiểm tra xem hai tập hợp có bằng nhau hay không.
  • Thực hiện các phép toán trên tập hợp: Cho các tập hợp A, B, yêu cầu tìm tập hợp A ∪ B (hợp của A và B), A ∩ B (giao của A và B), A \ B (hiệu của A và B), và CAB (bù của B trong A).
  • Giải các bài toán ứng dụng: Áp dụng kiến thức về tập hợp để giải quyết các bài toán thực tế.

Hướng dẫn giải chi tiết bài 1 trang 58

Để giải bài 1 trang 58 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản về tập hợp và các phép toán trên tập hợp. Dưới đây là hướng dẫn chi tiết cho từng dạng bài tập:

1. Liệt kê các phần tử của tập hợp

Để liệt kê các phần tử của một tập hợp được mô tả bằng tính chất đặc trưng, bạn cần xác định các phần tử thỏa mãn tính chất đó. Ví dụ, nếu tập hợp A được mô tả bằng tính chất “x là số tự nhiên chẵn nhỏ hơn 10”, thì các phần tử của A là {0, 2, 4, 6, 8}.

2. Xác định mối quan hệ giữa các tập hợp

Để xác định mối quan hệ giữa các tập hợp, bạn cần kiểm tra xem tất cả các phần tử của tập hợp này có thuộc tập hợp kia hay không. Nếu có, thì tập hợp này là tập con của tập hợp kia. Ví dụ, nếu A = {1, 2} và B = {1, 2, 3}, thì A là tập con của B.

3. Thực hiện các phép toán trên tập hợp

Để thực hiện các phép toán trên tập hợp, bạn cần áp dụng các định nghĩa và quy tắc sau:

  • Hợp của hai tập hợp A và B (A ∪ B): Tập hợp chứa tất cả các phần tử thuộc A hoặc thuộc B (hoặc cả hai).
  • Giao của hai tập hợp A và B (A ∩ B): Tập hợp chứa tất cả các phần tử thuộc cả A và B.
  • Hiệu của hai tập hợp A và B (A \ B): Tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.
  • Bù của tập hợp B trong A (CAB): Tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.

4. Giải các bài toán ứng dụng

Để giải các bài toán ứng dụng, bạn cần phân tích đề bài, xác định các tập hợp liên quan, và áp dụng các kiến thức về tập hợp và các phép toán trên tập hợp để giải quyết bài toán.

Ví dụ minh họa

Bài tập: Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Hãy tìm A ∪ B, A ∩ B, A \ B, và CAB.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6}
  • A ∩ B = {3, 4}
  • A \ B = {1, 2}
  • CAB = {1, 2}

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài tập.
  • Nắm vững các định nghĩa và quy tắc về tập hợp và các phép toán trên tập hợp.
  • Sử dụng các ký hiệu toán học một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong bài tập.

Tổng kết

Bài 1 trang 58 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 10