Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 97 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 3 trang 97 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 3 trang 97 Sách bài tập Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 97 sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Lấy một điểm M tùy ý. Chứng minh rằng:

Đề bài

Lấy một điểm M tùy ý. Chứng minh rằng:

a) I là trung điểm của đoạn thẳng AB khi và chỉ khi \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} \)

b) G là trọng tâm của tam giác ABC khi và chỉ khi \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)

Lời giải chi tiết

a) 

Giải bài 3 trang 97 sách bài tập toán 10 - Chân trời sáng tạo 1

Áp dụng quy tắc ba điểm ta có:

\(\overrightarrow {MA} + \overrightarrow {MB} = \left( {\overrightarrow {MI} + \overrightarrow {IA} } \right) + \left( {\overrightarrow {MI} + \overrightarrow {IB} } \right) = 2\overrightarrow {MI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) = 2\overrightarrow {MI} \) (đpcm)

(I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \)

b)

Giải bài 3 trang 97 sách bài tập toán 10 - Chân trời sáng tạo 2

Áp dụng quy tắc ba điểm ta có:

\(\begin{array}{l}\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)\\ = 3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} \end{array}\) (đpcm)

(G là trọng tâm của ABC nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \))

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 97 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 97 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 97 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế.

Nội dung bài tập

Bài 3 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của parabol (a, b, c).
  • Tìm tọa độ đỉnh của parabol.
  • Tìm phương trình trục đối xứng của parabol.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.

Phương pháp giải bài tập

Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Công thức tính tọa độ đỉnh của parabol: xđỉnh = -b/(2a), yđỉnh = -Δ/(4a) (với Δ = b2 - 4ac).
  2. Phương trình trục đối xứng: x = -b/(2a).
  3. Xác định khoảng đồng biến, nghịch biến: Dựa vào dấu của hệ số a.
  4. Vẽ đồ thị hàm số: Xác định các điểm đặc biệt (đỉnh, giao điểm với trục tung, giao điểm với trục hoành) và vẽ parabol.

Ví dụ minh họa

Bài toán: Cho hàm số y = x2 - 4x + 3. Tìm tọa độ đỉnh và phương trình trục đối xứng của parabol.

Giải:

Hệ số a = 1, b = -4, c = 3.

Tọa độ đỉnh: xđỉnh = -(-4)/(2*1) = 2, yđỉnh = -( (-4)2 - 4*1*3 )/(4*1) = - (16 - 12)/4 = -1.

Vậy tọa độ đỉnh của parabol là (2, -1).

Phương trình trục đối xứng: x = 2.

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại các bước tính toán để tránh sai sót.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
  • Vẽ đồ thị hàm số để hình dung rõ hơn về tính chất của hàm số.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải toán.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 10 Chân trời sáng tạo hoặc trên các trang web học toán online.

Kết luận

Bài 3 trang 97 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn hiểu sâu hơn về hàm số bậc hai. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Công thứcMô tả
xđỉnh = -b/(2a)Tính hoành độ đỉnh của parabol
yđỉnh = -Δ/(4a)Tính tung độ đỉnh của parabol
x = -b/(2a)Phương trình trục đối xứng của parabol

Tài liệu, đề thi và đáp án Toán 10