Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10 sách bài tập Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 129 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong môn Toán.
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lên (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
Đề bài
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lên (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
a)
Giá trị | 0 | 4 | 6 | 9 | 10 | 17 |
Tần số | 1 | 3 | 5 | 4 | 2 | 1 |
b)
Giá trị | 2 | 23 | 24 | 25 | 26 | 27 |
Tần số | 1 | 6 | 8 | 9 | 4 | 2 |
Phương pháp giải - Xem chi tiết
Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)
Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.
Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)
Lời giải chi tiết
a)
+ Số cao nhất và thấp nhất lần lượt là 17 và 0 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 17 - 0 = 17\)
+ Mẫu có 16 số liệu
+ Tứ phân vị: \({Q_2} = \left( {6 + 6} \right):2 = 6\); \({Q_1} = \left( {4 + 6} \right):2 = 5;{Q_3} = 9 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 4\)
+ Ta có \({Q_1} - 1,5.{\Delta _Q} = 5 - 1,5.4 = - 1\) và \({Q_3} + 1,5.{\Delta _Q} = 9 + 1,5.4 = 15\) nên mẫu có 1 giá trị ngoại lệ là 17;
Trung bình của mẫu số liệu là \(\overline x = 7,18\)
Phương sai: \({S^2} = 13,40\)
b)
+ Số cao nhất và thấp nhất lần lượt là 27 và 2 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 27 - 2 = 25\)
+ Mẫu có 30 số liệu
+ Tứ phân vị: \({Q_2} = \left( {24 + 25} \right):2 = 24,5\); \({Q_1} = 24;{Q_3} = 25 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 1\)
+ Ta có \({Q_1} - 1,5.{\Delta _Q} = 24 - 1,5.1 = 22,5\) và \({Q_3} + 1,5.{\Delta _Q} = 25 + 1,5.1 = 26,5\) nên mẫu có giá trị ngoại lệ là 2 và 27.
Trung bình của mẫu số liệu là \(\overline x = 23,83\)
Phương sai: \({S^2} = 17,74\)
Bài 2 trang 129 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học hoặc đại số.
Thông thường, bài 2 trang 129 sẽ bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 2 trang 129, bạn cần nắm vững các kiến thức và kỹ năng sau:
Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài 2 trang 129. Tuy nhiên, dưới đây là một ví dụ minh họa cách giải một dạng bài tập thường gặp:
Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính vectơ c = 2a - b.
Giải:
c = 2a - b = 2(1; 2) - (-3; 4) = (2; 4) - (-3; 4) = (2 + 3; 4 - 4) = (5; 0).
Để học tốt môn Toán 10, bạn có thể tham khảo các tài liệu sau:
Bài 2 trang 129 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ. Hy vọng với những hướng dẫn và lời giải chi tiết trên đây, bạn sẽ tự tin hơn khi giải bài tập này. Chúc bạn học tốt!