Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách Giải bài 4 trang 47 sách bài tập Toán 10 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập mới. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Hãy tìm giá trị của tham số a
Đề bài
Biết rằng trong khai triển \({\left( {ax - 1} \right)^5}\), hệ số của \({x^4}\) gấp 4 lần hệ số của \({x^2}\). Hãy tìm giá trị của tham số a.
Phương pháp giải - Xem chi tiết
Khai triển \({\left( {a + b} \right)^5} = C_5^0{a^5} + C_5^1{a^4}{b^1} + C_5^2{a^3}{b^2} + C_5^3{a^2}{b^3} + C_5^4{b^1}{a^4} + C_5^5{a^5}\)
Cho hệ số của \({x^4}\) gấp 4 lần hệ số của \({x^2}\).
Lời giải chi tiết
Khai triển \({\left( {ax - 1} \right)^5} = C_5^0{\left( {ax} \right)^5} + C_5^1{\left( {ax} \right)^4}{\left( { - 1} \right)^1} + C_5^2{\left( {ax} \right)^3}{\left( { - 1} \right)^2} + C_5^3{\left( {ax} \right)^2}{\left( { - 1} \right)^3} + C_5^4{\left( {ax} \right)^1}{\left( { - 1} \right)^4} + C_5^5{\left( { - 1} \right)^5}\)
+ Hệ số của \({x^4}\) là: \( - 5{a^4}\)
+ Hệ số của \({x^2}\) là: \( - 10{a^2}\)
\(\begin{array}{l} \Rightarrow - 5{a^4} = 4.\left( { - 10{a^2}} \right) \Rightarrow - 5{a^4} + 40{a^2} = 0 \Rightarrow - 5{a^2}\left( {{a^2} - 8} \right) = 0\\ \Rightarrow {a^2} = 8 \Rightarrow a = \pm 2\sqrt 2 \end{array}\)
Bài 4 trang 47 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế. Việc nắm vững các khái niệm này là nền tảng quan trọng để học tốt các chương trình Toán học nâng cao hơn.
Bài 4 trang 47 thường bao gồm các dạng bài tập sau:
Để giải bài tập này một cách hiệu quả, bạn cần:
Dưới đây là lời giải chi tiết cho bài 4 trang 47 sách bài tập Toán 10 Chân trời sáng tạo. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng và dễ hiểu, kèm theo các giải thích chi tiết để bạn có thể hiểu rõ bản chất của bài toán.
Để tìm đỉnh của parabol y = x2 - 4x + 3, ta thực hiện các bước sau:
Để tìm phương trình trục đối xứng của parabol y = -2x2 + 8x - 5, ta thực hiện các bước sau:
Khi giải bài tập về hàm số bậc hai, bạn cần lưu ý những điều sau:
Hàm số bậc hai có rất nhiều ứng dụng trong thực tế, ví dụ như:
Hy vọng rằng, với lời giải chi tiết và các hướng dẫn cụ thể trong bài viết này, bạn đã có thể tự tin giải bài 4 trang 47 sách bài tập Toán 10 Chân trời sáng tạo. Hãy luyện tập thường xuyên để nắm vững kiến thức và nâng cao kỹ năng giải toán của mình. Chúc bạn học tập tốt!