Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 7 trang 101, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Một hội đồng có đúng 1 người là nữ. Nếu chọn ngẫu nhiên 2 người từ hội đồng thì xác suất cả 2 người đều là nam là 0,8
Đề bài
Một hội đồng có đúng 1 người là nữ. Nếu chọn ngẫu nhiên 2 người từ hội đồng thì xác suất cả 2 người đều là nam là 0,8
a) Chọn ngẫu nhiên 1 người từ hội đồng, tính xác suất của biến cố có 1 người nữ trong 2 người đó
b) Hội đồng có bao nhiêu người
Phương pháp giải - Xem chi tiết
Phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là 1 biến cố
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)
Lời giải chi tiết
a) Không gian mẫu: “Chọn ngẫu nhiên 2 người”
Biến cố A: “có 1 người nữ trong 2 người đó”
=> \(\overline A \): “trong hai người đó không có nữ” hay chính là biến cố “cả hai ngguowif đều là nam”. Suy ra \(P(\overline A ) = 0,8\)
=> \(P\left( A \right) = 1 - 0,8 = 0,2\)
b) Gọi n là số người nam trong hội đồng \(\left( {n \in N*,n \ge 2} \right)\).
Như vậy hội đồng có n+1 người.
Số cách chọn 2 người bất kì là: \(n\left( \Omega \right) = C_{n + 1}^2\)
Số cách chọn 2 người đều là nam là: \(n(\overline A ) = C_n^2\)
Xác suất để 2 người được chọn đều là nam là 0,8
\(\begin{array}{l} \Leftrightarrow \frac{{C_n^2}}{{C_{n + 1}^2}} = 0,8 \Leftrightarrow C_n^2 = 0,8.C_{n + 1}^2\\ \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 0,8\frac{{(n + 1)!}}{{2!\left( {n - 1} \right)!}} \Leftrightarrow \frac{{n(n - 1)}}{2} = 0,8\frac{{(n + 1)n}}{2}\\ \Leftrightarrow n - 1 = 0,8\left( {n + 1} \right) \Rightarrow 0,2n = 1,8 \Leftrightarrow n = 9\end{array}\)
Vậy, hội đồng có 10 người.
Bài 7 trang 101 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và công thức là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 7 trang 101 SBT Toán 10 Chân trời sáng tạo, chúng ta sẽ đi qua từng phần của bài tập.
Cho hai vectơ a = (x1, y1) và b = (x2, y2). Tìm vectơ c = a + b.
Giải:
Vectơ tổng c = a + b được tính bằng cách cộng tương ứng các tọa độ của hai vectơ a và b:
c = (x1 + x2, y1 + y2)
Cho hai vectơ a = (x1, y1) và b = (x2, y2). Tìm vectơ d = a - b.
Giải:
Vectơ hiệu d = a - b được tính bằng cách trừ tương ứng các tọa độ của hai vectơ a và b:
d = (x1 - x2, y1 - y2)
Cho vectơ a = (x, y) và một số thực k. Tìm vectơ e = k.a.
Giải:
Vectơ tích e = k.a được tính bằng cách nhân mỗi tọa độ của vectơ a với số thực k:
e = (k.x, k.y)
Giaitoan.edu.vn là địa chỉ tin cậy cho học sinh, sinh viên và những người yêu thích môn Toán. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho các bài tập trong sách giáo khoa và sách bài tập Toán 10 Chân trời sáng tạo, cũng như các tài liệu học tập hữu ích khác. Hãy truy cập giaitoan.edu.vn để được hỗ trợ tốt nhất trong quá trình học tập!
Công thức | Mô tả |
---|---|
a + b = (x1 + x2, y1 + y2) | Phép cộng vectơ |
a - b = (x1 - x2, y1 - y2) | Phép trừ vectơ |
k.a = (k.x, k.y) | Tích của một số với vectơ |