Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 48 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 3 trang 48 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 3 trang 48 Sách bài tập Toán 10 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 48 sách bài tập Toán 10 Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tập hợp này có nhiêu nhiêu tập hợp con có 3 phần tử?

Đề bài

Một tập hợp có 10 phần tử. Tập hợp này có nhiêu nhiêu tập hợp con có 3 phần tử?

A. \(3!\);

B. \(10.9.8\); 

C.\({10^3}\);

D. \(\frac{{10!}}{{3!7!}}\).

Lời giải chi tiết

Để tạo ra 1 tập con có 3 phần tử ta cần chọn 3 trong 10 phần tử

=> Số tập con có 3 phần tử là số tổ hợp chập 3 của 10 bằng: \(C_{10}^3 = \frac{{10!}}{{3!7!}}\)

Chọn D.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 48 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 48 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 48 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế.

Nội dung bài tập

Bài 3 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của parabol (a, b, c).
  • Tìm tọa độ đỉnh của parabol.
  • Tìm phương trình trục đối xứng của parabol.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.

Phương pháp giải bài tập

Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Công thức tính tọa độ đỉnh của parabol: xđỉnh = -b/(2a), yđỉnh = -Δ/(4a) (với Δ = b2 - 4ac).
  2. Phương trình trục đối xứng: x = -b/(2a).
  3. Xác định hệ số a: Nếu a > 0 thì parabol có dạng chữ U, nếu a < 0 thì parabol có dạng chữ ∩.
  4. Sử dụng các tính chất của hàm số bậc hai: Hàm số đồng biến trên khoảng (-b/(2a), +∞) nếu a > 0 và trên khoảng (-∞, -b/(2a)) nếu a < 0.

Ví dụ minh họa

Bài toán: Tìm tọa độ đỉnh và phương trình trục đối xứng của parabol y = x2 - 4x + 3.

Giải:

Hàm số có dạng y = ax2 + bx + c, với a = 1, b = -4, c = 3.

Tọa độ đỉnh của parabol là:

xđỉnh = -b/(2a) = -(-4)/(2*1) = 2.

yđỉnh = -Δ/(4a) = -((-4)2 - 4*1*3)/(4*1) = - (16 - 12)/4 = -1.

Vậy tọa độ đỉnh của parabol là (2, -1).

Phương trình trục đối xứng của parabol là x = 2.

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại các bước giải để tránh sai sót.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
  • Vẽ đồ thị hàm số để hiểu rõ hơn về tính chất của hàm số.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải bài tập.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 10 Chân trời sáng tạo hoặc trên các trang web học toán online.

Kết luận

Bài 3 trang 48 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc hai và các ứng dụng của nó. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Công thứcMô tả
xđỉnh = -b/(2a)Hoành độ đỉnh của parabol
yđỉnh = -Δ/(4a)Tung độ đỉnh của parabol
x = -b/(2a)Phương trình trục đối xứng
Bảng tổng hợp các công thức quan trọng

Tài liệu, đề thi và đáp án Toán 10