Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 70 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 5 trang 70 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 5 trang 70 Sách bài tập Toán 10 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 70 Sách bài tập Toán 10 - Chân trời sáng tạo. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất, đồng thời giải thích rõ ràng các khái niệm toán học liên quan. Hãy cùng giaitoan.edu.vn khám phá lời giải bài tập này ngay nhé!

Cho đường tròn (C) có phương trình

Đề bài

Cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 6x - 2y - 15 = 0\)

a) Chứng tỏ rằng điểm \(A\left( {0;5} \right)\) thuộc đường tròn \(\left( C \right)\)

b) Viết phương trình tiếp tuyến với \(\left( C \right)\) tại điểm \(A\left( {0;5} \right)\)

c) Viết phương trình tiếp tuyến với \(\left( C \right)\) song song với đường thẳng \(8x + 6y + 99 = 0\)

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 70 sách bài tập toán 10 - Chân trời sáng tạo 1

+ Phương trình tiếp tuyến d của đường tròn tại A có vectơ pháp tuyến \(\overrightarrow {IA} \)

Lời giải chi tiết

\(\left( C \right)\) có phương trình \({x^2} + {y^2} - 6x - 2y - 15 = 0\) 

\(\begin{array}{l} \Leftrightarrow {x^2} - 6x + 9 + {y^2} - 2y + 1 - 25 = 0\\ \Leftrightarrow {(x - 3)^2} + {(y - 1)^2} = 25\end{array}\)

\( \Rightarrow \) (C) có tâm I(3;2) và bán kính R=5.

a) \(A(0;5)\) thuộc (C) vì \({0^2} - 6.0 + 9 + {5^2} - 2.5 + 1 - 25 = 0\)

b) + VTPT của PT tiếp tuyến tại A là \(\overrightarrow {{n_d}} = \overrightarrow {IA} = \left( { 3;-4} \right) \)

PT tiếp tuyến tại A là \( d: 3\left( {x - 0} \right) - 4\left( {y - 5} \right) = 0 \Rightarrow d: 3x - 4y + 20 = 0\)

c) + \(\Delta //8x + 6y + 99 = 0 \Rightarrow \Delta :8x + 6y + c = 0\left( {c \ne 99} \right)\)

+ \(d\left( {I,\Delta } \right) = R \Rightarrow \frac{{\left| {8.3 + 6.1 + c} \right|}}{{\sqrt {{8^2} + {6^2}} }} = 5 \Rightarrow \left| {c + 30} \right| = 50 \Rightarrow \left[ \begin{array}{l}c = 20\\c = - 80\end{array} \right.\)

Vậy \(\Delta :8x + 6y + 20 = 0\) hoặc \(\Delta :8x + 6y - 80 = 0\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 5 trang 70 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 5 trang 70 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 5 trang 70 Sách bài tập Toán 10 - Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa vectơ, các phép cộng, trừ, nhân vectơ với một số thực, và cách biểu diễn vectơ trong hệ tọa độ.

Nội dung chi tiết bài 5 trang 70

Bài 5 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Thực hiện các phép toán vectơ. Học sinh cần thực hiện các phép cộng, trừ, nhân vectơ với một số thực dựa trên các vectơ đã cho.
  • Dạng 2: Chứng minh đẳng thức vectơ. Yêu cầu học sinh chứng minh một đẳng thức vectơ nào đó bằng cách sử dụng các quy tắc và tính chất của vectơ.
  • Dạng 3: Tìm tọa độ của vectơ. Cho các điểm trong hệ tọa độ, học sinh cần tìm tọa độ của vectơ tạo bởi các điểm đó.
  • Dạng 4: Ứng dụng vectơ vào hình học. Sử dụng vectơ để chứng minh các tính chất hình học, ví dụ như chứng minh hai đường thẳng song song, vuông góc, hoặc ba điểm thẳng hàng.

Lời giải chi tiết bài 5 trang 70

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 5 trang 70, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày một ví dụ minh họa)

Ví dụ minh họa:

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2

Lời giải:

  1. Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}
  2. Ta có: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM}
  3. Thay overrightarrow{BM} =overrightarrow{MC} vào phương trình trên, ta được: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{MC}
  4. overrightarrow{AC} =overrightarrow{AM} +overrightarrow{MC}, suy ra overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM}
  5. Thay overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM} vào phương trình overrightarrow{AM} =overrightarrow{AB} +overrightarrow{MC}, ta được: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AM}
  6. Chuyển vế, ta có: 2overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC}
  7. Suy ra: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm)

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:

  • Nắm vững định nghĩa và các tính chất của vectơ.
  • Thành thạo các phép toán vectơ (cộng, trừ, nhân với một số thực).
  • Biết cách biểu diễn vectơ trong hệ tọa độ.
  • Vẽ hình minh họa để dễ dàng hình dung bài toán.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín.
  • Các video bài giảng về vectơ trên YouTube.
  • Các diễn đàn trao đổi kiến thức toán học.

Kết luận

Bài 5 trang 70 Sách bài tập Toán 10 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và các ứng dụng của vectơ trong hình học. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn đã cung cấp, các em học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 10