Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 123 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em học sinh hiểu bài và làm bài tập một cách hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.
Bảng sau ghi lại độ tuổi của 2 nhóm vận động viên tham gia một cuộc thi
Đề bài
Bảng sau ghi lại độ tuổi của 2 nhóm vận động viên tham gia một cuộc thi
Nhóm 1 | 20 | 32 | 27 | 31 | 32 | 30 | 32 | 29 | 17 | 29 | 22 | 31 |
Nhóm 2 | 22 | 29 | 22 | 30 | 22 | 31 | 29 | 21 | 32 | 20 | 31 | 29 |
a) Hãy so sánh độ tuổi hai nhóm vận động viên theo số trung bình và trung vị.
b) Tìm tứ phân vị của độ tuổi vận động viên hai nhóm gộp lại.
Phương pháp giải - Xem chi tiết
Tính số trung bình và trung vị của độ tuổi hai nhóm động viên sau đó so sánh.
Sắp xếp và tìm tứ phân vị
Lời giải chi tiết
a)
- Số trung bình của 2 dãy 12 số hạng:
+ Nhóm 1: \(\overline {{x_1}} = \frac{{20 + 32 + 27 + 31 + 32 + 30 + 32 + 29 + 17 + 29 + 22 + 31}}{{12}} = 27,67\)
+ Nhóm 2: \(\overline {{x_2}} = \frac{{22 + 29 + 22 + 30 + 22 + 31 + 29 + 21 + 32 + 20 + 31 + 29}}{{12}} = 26,5\)
- Sắp xếp lại theo thứ tự không giảm ta có bảng sau:
Nhóm 1 | 17 | 20 | 22 | 27 | 29 | 29 | 30 | 31 | 31 | 32 | 32 | 32 |
Nhóm 2 | 20 | 21 | 22 | 22 | 22 | 29 | 29 | 29 | 30 | 31 | 31 | 32 |
+ Số trung vị của nhóm 1 là: \(\left( {29 + 30} \right):2 = 29,5\)
+ Số trung vị của nhóm 2 là: \(\left( {29 + 29} \right):2 = 29\)
Như vậy, số trung bình và số trung vị của nhóm 1 đều lớn hơn nhóm 2, nên độ tuổi của các vận động viên nhóm 1 cao hơn nhóm 2
b) Sắp xếp lại số liệu gộp 2 nhóm theo thứ tự không giảm: 17; 20; 20; 21; 22; 22; 22; 22; 27; 29; 29; 29; 29; 29; 30; 30; 31; 31; 31; 31; 32; 32; 32; 32
- Nhóm 1:
+ Vì \(n = 24\) là số chẵn nên tứ phân vị thứ hai \({Q_2} = \left( {29 + 29} \right):2 = 29\)
+ Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái \({Q_2}\): 17; 20; 20; 21; 22; 22; 22; 22; 27; 29; 29; 29
Vậy \({Q_1} = \left( {22 + 22} \right):2 = 22\)
+ Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải \({Q_2}\): 29; 29; 30; 30; 31; 31; 31; 31; 32; 32; 32; 32
Vậy \({Q_3} = \left( {31 + 31} \right):2 = 31\)
Bài 5 trang 123 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về Vectơ trong mặt phẳng. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán cụ thể.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 123 sách bài tập Toán 10 Chân trời sáng tạo một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ 1: Cho hai vectơ a = (2; -1) và b = (-3; 4). Tính a + b.
Giải:
a + b = (2 + (-3); -1 + 4) = (-1; 3)
Ví dụ 2: Cho vectơ a = (1; 2) và số thực k = 3. Tính ka.
Giải:
ka = (3 * 1; 3 * 2) = (3; 6)
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác.
Bài 5 trang 123 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp các em hiểu sâu hơn về vectơ và các phép toán vectơ. Hy vọng với hướng dẫn chi tiết này, các em sẽ giải bài tập một cách dễ dàng và hiệu quả.
Dạng bài | Phương pháp giải |
---|---|
Phép toán vectơ | Áp dụng quy tắc cộng, trừ vectơ và tích của một số với vectơ. |
Chứng minh đẳng thức vectơ | Biến đổi vế này về vế kia hoặc sử dụng các tính chất của vectơ. |
Ứng dụng vectơ | Kết hợp kiến thức về vectơ với kiến thức hình học. |