Bài 7 trang 103 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7 trang 103 SBT Toán 10 Chân trời sáng tạo, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Một hộp chứa 2 quả bóng xanh và 1 số quả bóng trắng. Lấy ra ngẫu nhiên 2 quả bóng từ hộp. Biết rằng xác suất chọn được 2 quả bóng khác màu là \(\frac{{10}}{{21}}\).
Đề bài
Một hộp chứa 2 quả bóng xanh và 1 số quả bóng trắng. Lấy ra ngẫu nhiên 2 quả bóng từ hộp. Biết rằng xác suất chọn được 2 quả bóng khác màu là \(\frac{{10}}{{21}}\).
a) Tính xác suất 2 quả bóng lấy ra cùng màu
b) Hỏi trong hộp có bao nhiêu quả bóng?
Phương pháp giải - Xem chi tiết
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)
Biến cố đối của biến cố A là biến cố không xảy ra A, kí hiệu là \(\overline A \) và \(P\left( {\overline A } \right) + P\left( A \right) = 1\)
Lời giải chi tiết
a) Gọi A là biến cố “lấy được hai quả bóng cùng màu”
\( \Rightarrow \) Biến cố đối \(\overline A \): “lấy được hai quả bóng khác màu”
Mà \(P(\overline A ) = \frac{{10}}{{21}}\)
\( \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{10}}{{21}} = \frac{{11}}{{21}}\)
b) Gọi k là số quả bóng trắng trong hộp \(\left( {k \in N*} \right)\).
Số cách lấy 2 quả bóng bất kì từ (k+2) quả bóng là \(C_{k + 2}^2\)
Việc lấy được 2 quả bóng khác màu được thực hiện qua 2 công đoạn:
Công đoạn 1: Chọn 1 quả bóng xanh, có 2 cách
Công đoạn 2: Chọn 1 quả bóng trắng, có k cách
=> Có 2.k cách để lấy đc 2 quả bóng khác màu.
Xác suất lấy được 2 quả bóng khác màu là:
\(\begin{array}{l}\frac{{10}}{{21}} = \frac{{2k}}{{C_{k + 2}^2}} = \frac{{4k}}{{\left( {k + 1} \right)\left( {k + 2} \right)}}\\ \Rightarrow 10\left( {k + 1} \right)\left( {k + 2} \right) = 21.4k\\ \Leftrightarrow 10{k^2} - 54k + 20 = 0\\ \Leftrightarrow \left[ \begin{array}{l}k = 5\\k = \frac{2}{5}\end{array} \right.\\ \Rightarrow k = 5\end{array}\)
Do đó trong hộp có 2 quả bóng xanh và 5 quả bóng trắng.
Vậy, trong hộp có 7 quả bóng
Bài 7 trang 103 SBT Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 7 trang 103 SBT Toán 10 Chân trời sáng tạo thường yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng phần của bài toán. (Nội dung giải chi tiết bài tập sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và sử dụng hình vẽ minh họa nếu cần thiết. Ví dụ:)
Đề bài: Cho ba điểm A, B, C. Chứng minh rằng A, B, C thẳng hàng.
Lời giải:
Để chứng minh A, B, C thẳng hàng, ta cần chứng minh rằng tồn tại một số thực k sao cho AB = kAC. Ta tính các vectơ AB và AC. Nếu tồn tại k thỏa mãn, thì A, B, C thẳng hàng.
(Tiếp tục trình bày các bước tính toán cụ thể và kết luận.)
Sau khi nắm vững cách giải bài 7 trang 103 SBT Toán 10 Chân trời sáng tạo, các em có thể tự luyện tập với các bài tập tương tự để củng cố kiến thức. Một số bài tập gợi ý:
Khi giải bài tập về vectơ, các em cần lưu ý những điều sau:
Để học tốt môn Toán 10, các em có thể tham khảo thêm các tài liệu sau:
Bài 7 trang 103 SBT Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn của giaitoan.edu.vn, các em sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán 10.