Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách Giải bài 6 trang 57 sách bài tập Toán 10 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập mới. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích dễ hiểu để giúp bạn nắm vững kiến thức.
Hàm số đồng biến trên khoảng
Đề bài
Hàm số \(y = f\left( x \right) = - \left( {x + 2} \right)\left( {x - 4} \right)\) đồng biến trên khoảng
A. \(\left( { - \infty ; - 1} \right)\)
B. \(\left( {1; + \infty } \right)\)
C. \(\left( { - \infty ;1} \right)\)
D. \(\left( { - 1; + \infty } \right)\)
Lời giải chi tiết
Ta có: \(y = f\left( x \right) = - \left( {x + 2} \right)\left( {x - 4} \right) = - {x^2} + 2x + 8\) có \(a = - 1 < 0\) và \( - \frac{b}{{2a}} = - \frac{2}{{2.( - 1)}} = 1\)
Suy ra hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\)
Chọn C
Bài 6 trang 57 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.
Bài 6 thường bao gồm các dạng bài tập sau:
Để tính tổng hai vectơ \vec{a}" và \vec{b}", ta thực hiện phép cộng theo tọa độ: \vec{a} + \vec{b} = (x_a + x_b, y_a + y_b)". Ví dụ, nếu \vec{a} = (1, 2)" và \vec{b} = (3, -1)" thì \vec{a} + \vec{b} = (1+3, 2-1) = (4, 1)".
Để tính hiệu hai vectơ \vec{a}" và \vec{b}", ta thực hiện phép trừ theo tọa độ: \vec{a} - \vec{b} = (x_a - x_b, y_a - y_b)". Ví dụ, nếu \vec{a} = (1, 2)" và \vec{b} = (3, -1)" thì \vec{a} - \vec{b} = (1-3, 2-(-1)) = (-2, 3)".
Để tính tích của một số k" với vectơ \vec{a}", ta nhân số k" với mỗi tọa độ của vectơ \vec{a}": k\vec{a} = (kx_a, ky_a)". Ví dụ, nếu k = 2" và \vec{a} = (1, 2)" thì 2\vec{a} = (2*1, 2*2) = (2, 4)".
Ví dụ: Cho \vec{a} = (2, -3)" và \vec{b} = (-1, 4)". Tính 2\vec{a} - \vec{b}".
Giải:
Bài 6 trang 57 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải quyết bài tập một cách hiệu quả. Chúc bạn học tốt!