Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 81 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 1 trang 81 sách bài tập toán 10 - Chân trời sáng tạo

Giải bài 1 trang 81 Sách bài tập Toán 10 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 81 sách bài tập Toán 10 Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải, đáp án chính xác và những lưu ý quan trọng để bạn nắm vững kiến thức.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, phù hợp với mọi trình độ học sinh. Hãy cùng theo dõi để hiểu rõ hơn về cách giải bài tập này nhé!

Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng:

Đề bài

Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng:

 \(\frac{{\cos A}}{a} + \frac{{\cos B}}{b} + \frac{{\cos C}}{c} = \frac{{{a^2} + {b^2} + {c^2}}}{{2abc}}\)

Lời giải chi tiết

Từ định lí côsin ta suy ra \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)

Suy ra:

\(\begin{array}{l}\frac{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{a} + \frac{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{b} + \frac{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}}{c}\\ = \frac{{\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - c} \right)}}{{2abc}}\\ = \frac{{{a^2} + {b^2} + {c^2}}}{{2abc}}\end{array}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 1 trang 81 sách bài tập toán 10 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 1 trang 81 Sách bài tập Toán 10 - Chân trời sáng tạo: Tổng quan

Bài 1 trang 81 sách bài tập Toán 10 Chân trời sáng tạo thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về định nghĩa hàm số, tập xác định, tập giá trị, và các tính chất của hàm số bậc hai để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Xác định hàm số bậc hai dựa vào các thông tin cho trước.
  • Tìm tập xác định của hàm số bậc hai.
  • Tìm tập giá trị của hàm số bậc hai.
  • Xác định các yếu tố của parabol (đỉnh, trục đối xứng, tiêu điểm, đường chuẩn).
  • Vẽ đồ thị hàm số bậc hai.

Phương pháp giải bài tập

Để giải bài tập này hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa hàm số bậc hai: Hàm số bậc hai có dạng y = ax2 + bx + c, với a ≠ 0.
  2. Tập xác định: Tập xác định của hàm số bậc hai là tập R (tập hợp tất cả các số thực).
  3. Tập giá trị: Tập giá trị của hàm số bậc hai phụ thuộc vào dấu của hệ số a.
  4. Đỉnh của parabol: Tọa độ đỉnh của parabol là I(x0, y0), với x0 = -b/2a và y0 = f(x0).
  5. Trục đối xứng: Trục đối xứng của parabol là đường thẳng x = x0.

Ví dụ minh họa

Bài toán: Cho hàm số y = 2x2 - 4x + 1. Hãy tìm tập xác định, tập giá trị và tọa độ đỉnh của parabol.

Giải:

  • Tập xác định: Tập xác định của hàm số là R.
  • Tập giá trị: Vì a = 2 > 0, parabol có dạng mở lên trên. Tập giá trị của hàm số là [y0; +∞), với y0 là tung độ đỉnh.
  • Tọa độ đỉnh: x0 = -(-4)/(2*2) = 1. y0 = 2(1)2 - 4(1) + 1 = -1. Vậy tọa độ đỉnh của parabol là I(1; -1).

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số bậc hai, bạn cần chú ý:

  • Xác định đúng hệ số a, b, c của hàm số.
  • Sử dụng đúng công thức để tính toán.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Vẽ đồ thị hàm số để hiểu rõ hơn về tính chất của hàm số.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 10 Chân trời sáng tạo. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.

Kết luận

Bài 1 trang 81 sách bài tập Toán 10 Chân trời sáng tạo là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc hai. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà chúng tôi cung cấp, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Hàm sốTập xác địnhTập giá trịĐỉnh
y = ax2 + bx + c (a > 0)R[y0; +∞)I(x0; y0)
y = ax2 + bx + c (a < 0)R(-∞; y0]I(x0; y0)

Tài liệu, đề thi và đáp án Toán 10