Chào mừng các em học sinh đến với lời giải chi tiết bài 3 trang 82 SGK Toán 8 – Cánh diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, mang đến những tài liệu học tập chất lượng và hữu ích.
Cho Hình 76, biết
Đề bài
Cho Hình 76, biết \(AB = 4,\,\,BC = 3,\,\,BE = 2,\,\,BD = 6\). Chứng minh:
a) \(\Delta ABD \backsim \Delta EBC\)
b) \(\widehat {DAB} = \widehat {DEG}\)
c) Tam giác DGE vuông
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Chứng minh hai tam giác đồng dạng bằng trường hợp đồng dạng thứ hai.
b) Từ hai tam giác đồng dạng đã chứng minh ở câu a suy ra các cặp góc bằng nhau.
c) Chứng minh \(\widehat {DGE} = 90^\circ \)
Lời giải chi tiết
a) Ta có: \(\frac{{AB}}{{EB}} = \frac{4}{2} = 2;\,\,\frac{{BD}}{{BC}} = \frac{6}{3} = 2\)
\( \Rightarrow \frac{{AB}}{{EB}} = \frac{{BD}}{{BC}}\)
Xét tam giác ABD và tam giác EBC có:
\(\frac{{AB}}{{EB}} = \frac{{BD}}{{BC}}\) và \(\widehat {ABD} = \widehat {EBC} = 90^\circ \)
\( \Rightarrow \Delta ABD \backsim \Delta EBC\) (c-g-c).
b) Vì \(\Delta ABD \backsim \Delta EBC\) nên \(\widehat {DAB} = \widehat {CEB}\)
Mà \(\widehat {DEG} = \widehat {CEB}\) (hai góc đối đỉnh) nên \(\widehat {DAB} = \widehat {DEG}\).
c) Vì \(\Delta ABD \backsim \Delta EBC\) nên \(\widehat {ADB} = \widehat {ECB}\) hay \(\widehat {GDE} = \widehat {ECB}\)
Vì tam giác EBC vuông tại B nên ta có:
\(\begin{array}{l}\widehat {ECB} + \widehat {CEB} = 90^\circ \\ \Rightarrow \widehat {GDE} + \widehat {DEG} = 90^\circ \end{array}\)
Mà trong tam giác DEG có:
\(\begin{array}{l}\widehat {GDE} + \widehat {DEG} + \widehat {DGE} = 180^\circ \\ \Rightarrow 90^\circ + \widehat {DGE} = 180^\circ \\ \Rightarrow \widehat {DGE} = 90^\circ \end{array}\)
\( \Rightarrow \)Tam giác DGE vuông tại G.
Bài 3 trang 82 SGK Toán 8 – Cánh diều thuộc chương trình đại số, tập trung vào việc vận dụng các kiến thức về hình chữ nhật để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các tính chất của hình chữ nhật, đặc biệt là mối quan hệ giữa các cạnh và các góc.
Bài 3 trang 82 SGK Toán 8 – Cánh diều thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng phần của bài tập. (Giả sử bài tập cụ thể là: Cho hình chữ nhật ABCD, AB = 6cm, BC = 8cm. Tính độ dài đường chéo AC.)
Để tính độ dài đường chéo AC của hình chữ nhật ABCD, ta sử dụng định lý Pitago trong tam giác vuông ABC. Theo định lý Pitago, ta có:
AC2 = AB2 + BC2
Thay AB = 6cm và BC = 8cm vào, ta được:
AC2 = 62 + 82 = 36 + 64 = 100
Suy ra AC = √100 = 10cm
Vậy độ dài đường chéo AC của hình chữ nhật ABCD là 10cm.
Để giải quyết các bài tập về hình chữ nhật một cách hiệu quả, các em cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo một số bài tập tương tự sau:
Các em có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện môn Toán:
Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải bài 3 trang 82 SGK Toán 8 – Cánh diều và các bài tập tương tự. Chúc các em học tập tốt!