Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 42 SGK Toán 8 tập 1 - Cánh diều. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải bài tập, nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp đáp án chính xác, dễ hiểu và các bài giảng chất lượng.
Thực hiện phép tính:
Đề bài
Thực hiện phép tính:
a) \(\dfrac{{5{\rm{x}} - 4}}{9} + \dfrac{{4{\rm{x}} + 4}}{9}\)
b) \(\dfrac{{{x^2}y - 6}}{{2{{\rm{x}}^2}y}} + \dfrac{{6 - x{y^2}}}{{2{{\rm{x}}^2}y}}\)
c) \(\dfrac{{x + 1}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x - 18}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x + 2}}{{{x^2} - 5{\rm{x}}}}\)
d) \(\dfrac{{7y}}{3} - \dfrac{{7y - 5}}{3}\)
e) \(\dfrac{{4{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}} - \dfrac{{7{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}}\)
g) \(\dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} - \dfrac{{x - y}}{{2y - x}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc cộng, trừ hai phân thức cùng mẫu, khác mẫu và phân thức đối để thực hiện các phép tính.
Lời giải chi tiết
a)
\(\dfrac{{5{\rm{x}} - 4}}{9} + \dfrac{{4{\rm{x}} + 4}}{9} \\= \dfrac{{5{\rm{x}} - 4 + 4{\rm{x}} + 4}}{9} \\= \dfrac{{9{\rm{x}}}}{9} \\= x\)
b)
\(\dfrac{{{x^2}y - 6}}{{2{{\rm{x}}^2}y}} + \dfrac{{6 - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{{x^2}y - 6 + 6 - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{{x^2}y - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{xy\left( {x - y} \right)}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{x - y}}{{2{\rm{x}}}}\)
c)
\(\dfrac{{x + 1}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x - 18}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x + 2}}{{{x^2} - 5{\rm{x}}}} \\= \dfrac{{x + 1 + x - 18 + x + 2}}{{{x^2} - 5{\rm{x}}}} \\= \dfrac{{3{\rm{x}} - 15}}{{x\left( {x - 5} \right)}} \\= \dfrac{{3\left( {x - 5} \right)}}{{x\left( {x - 5} \right)}} \\= \dfrac{3}{x}\)
d)
\(\dfrac{{7y}}{3} - \dfrac{{7y - 5}}{3} \\= \dfrac{{7y - 7y + 5}}{3} \\= \dfrac{5}{3}\)
e)
\(\dfrac{{4{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}} - \dfrac{{7{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}} \\= \dfrac{{4{\rm{x}} - 1 - 7{\rm{x}} + 1}}{{3{\rm{x}}{y^2}}} \\= \dfrac{{-3{\rm{x}}}}{{3{\rm{x}}{y^2}}} \\= \dfrac{-1}{{{y^2}}}\)
g)
\(\dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} - \dfrac{{x - y}}{{2y - x}} \\= \dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} + \left( { - \dfrac{{x - y}}{{2y - x}}} \right) \\= \dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} + \dfrac{{x - y}}{{x - 2y}} \\= \dfrac{{3y - 2{\rm{x}} + x - y}}{{x - 2y}} \\= \dfrac{{2y - x}}{{ - \left( {2y - x} \right)}} \\= - 1\)
Bài 1 trang 42 SGK Toán 8 tập 1 - Cánh diều thuộc chương trình đại số, tập trung vào việc ôn tập các kiến thức về đa thức, thu gọn đa thức, bậc của đa thức và các phép toán trên đa thức. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các bài học tiếp theo.
Bài 1 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài tập này, học sinh cần:
a) Biểu thức đại số biểu thị chu vi của hình chữ nhật:
Chu vi = 2(x + y)
b) Biểu thức đại số biểu thị diện tích của hình chữ nhật:
Diện tích = x * y
c) Tính giá trị của biểu thức chu vi khi x = 5cm và y = 3cm:
Chu vi = 2(5 + 3) = 2 * 8 = 16cm
d) Tính giá trị của biểu thức diện tích khi x = 5cm và y = 3cm:
Diện tích = 5 * 3 = 15cm2
Khi giải bài tập, học sinh cần chú ý:
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Bài 1 trang 42 SGK Toán 8 tập 1 - Cánh diều là một bài tập cơ bản giúp học sinh ôn tập kiến thức về biểu thức đại số và các phép toán trên đa thức. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các em sẽ tự tin hơn trong quá trình học tập môn Toán.
Hình học | Công thức |
---|---|
Chu vi hình chữ nhật | 2(chiều dài + chiều rộng) |
Diện tích hình chữ nhật | chiều dài * chiều rộng |
Diện tích hình vuông | cạnh * cạnh |