Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 8 Cánh diều của giaitoan.edu.vn. Ở đây, chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho tất cả các bài tập trong SGK Toán 8, giúp các em nắm vững kiến thức và tự tin hơn trong học tập.
Mục 2 trang 40, 41, 42 SGK Toán 8 – Cánh diều là một phần quan trọng trong chương trình học, đòi hỏi các em phải hiểu rõ các khái niệm và vận dụng linh hoạt các công thức đã học.
Quan sát phương trình
Video hướng dẫn giải
Quan sát phương trình (ẩn \(x\)): \(4x + 12 = 0\), nêu nhận xét về bậc của đa thức ở vế trái của phương trình đó.
Phương pháp giải:
Xác định đa thức ở vế trái rồi xác định bậc của đa thức đó.
Lời giải chi tiết:
Đa thức ở vế trái là: \(4x + 12\)
Đa thức có bậc 1
Video hướng dẫn giải
Nêu hai ví dụ về phương trình bậc nhất ẩn \(x\)
Phương pháp giải:
Dựa vào định nghĩa về phương trình bậc nhất một ẩn để đưa ra hai ví dụ về phương trình bậc nhất ẩn \(x\).
Lời giải chi tiết:
Hai ví dụ về phương trình bậc nhất ẩn \(x\):
\(3x + 9 = 0\) và \(4x - \frac{1}{2} = 0\).
Video hướng dẫn giải
Xét đẳng thức số: \(2 + 3 - 4 = 9 - 10 + 2\). Tính giá trị mỗi vế của đẳng thức đó khi nhân cả hai vế với 5 và so sánh hai giá trị nhận được.
Phương pháp giải:
- Xác định vế trái, vế phải của đẳng thức.
- Nhân mỗi vế với 5 rồi so sánh hai kết quả.
Lời giải chi tiết:
Vế trái của đẳng thức: \(2 + 3 - 4\)
Khi nhân vế trái với 5 ta được: \(5.\left( {2 + 3 - 4} \right) = 5.1 = 5\)
Vế phải của đẳng thức: \(9 - 10 + 2\)
Khi nhân vế phải với 5 ta được: \(5.\left( {9 - 10 + 2} \right) = 5.1 = 5\)
Ta thấy sau khi nhân mỗi vế với 5, giá trị của hai vế bằng nhau.
Video hướng dẫn giải
Giải phương trình:
\(2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\).
Phương pháp giải:
Dựa vào quy tắc chuyển vế, quy tắc nhân và quy tắc phá ngoặc để giải phương trình.
Lời giải chi tiết:
\(\begin{array}{l}2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\\\,\,\,\,\,2x - 1,4 - 1,6 = 1,5 - x - 1,2\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x - 3 = 0,3 - x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x + x = 0,3 + 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3x = 3,3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1,1.\end{array}\)
Vậy phương trình có nghiệm \(x = 1,1.\)
Video hướng dẫn giải
Quan sát phương trình (ẩn \(x\)): \(4x + 12 = 0\), nêu nhận xét về bậc của đa thức ở vế trái của phương trình đó.
Phương pháp giải:
Xác định đa thức ở vế trái rồi xác định bậc của đa thức đó.
Lời giải chi tiết:
Đa thức ở vế trái là: \(4x + 12\)
Đa thức có bậc 1
Video hướng dẫn giải
Nêu hai ví dụ về phương trình bậc nhất ẩn \(x\)
Phương pháp giải:
Dựa vào định nghĩa về phương trình bậc nhất một ẩn để đưa ra hai ví dụ về phương trình bậc nhất ẩn \(x\).
Lời giải chi tiết:
Hai ví dụ về phương trình bậc nhất ẩn \(x\):
\(3x + 9 = 0\) và \(4x - \frac{1}{2} = 0\).
Video hướng dẫn giải
Kiểm tra xem \(x = - 3\) có là nghiệm của phương trình bậc nhất \(5x + 15 = 0\) hay không.
Phương pháp giải:
Tham khảo Ví dụ 2 Sách giáo khoa Toán 8 – Cánh diều.
Lời giải chi tiết:
Thay \(x = - 3\) vào phương trình ta có: \(5.\left( { - 3} \right) + 15 = - 15 + 15 = 0\)
Vậy \(x = - 3\) là nghiệm của phương trình \(5x + 15 = 0\).
Video hướng dẫn giải
Nêu quy tắc chuyển vế trong một đẳng thức số.
Phương pháp giải:
Nhớ lại quy tắc chuyển vế trong một đẳng thức số đã được học.
Lời giải chi tiết:
Quy tắc: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó: dấu "+" đổi thành dấu "−" và dấu "−" thành dấu "+".
Video hướng dẫn giải
Xét đẳng thức số: \(2 + 3 - 4 = 9 - 10 + 2\). Tính giá trị mỗi vế của đẳng thức đó khi nhân cả hai vế với 5 và so sánh hai giá trị nhận được.
Phương pháp giải:
- Xác định vế trái, vế phải của đẳng thức.
- Nhân mỗi vế với 5 rồi so sánh hai kết quả.
Lời giải chi tiết:
Vế trái của đẳng thức: \(2 + 3 - 4\)
Khi nhân vế trái với 5 ta được: \(5.\left( {2 + 3 - 4} \right) = 5.1 = 5\)
Vế phải của đẳng thức: \(9 - 10 + 2\)
Khi nhân vế phải với 5 ta được: \(5.\left( {9 - 10 + 2} \right) = 5.1 = 5\)
Ta thấy sau khi nhân mỗi vế với 5, giá trị của hai vế bằng nhau.
Video hướng dẫn giải
Giải các phương trình:
a) \( - 6x - 15 = 0\);
b) \( - \frac{9}{2}x + 21 = 0.\)
Phương pháp giải:
Dựa vào các quy tắc chuyển vế và quy tắc nhân để giải phương trình.
Lời giải chi tiết:
a)
\(\begin{array}{l} - 6x - 15 = 0\\\,\,\,\,\,\,\,\,\, - 6x = 15\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 15:\left( { - 6} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \frac{5}{2}\end{array}\)
Vậy phương trình có nghiệm \(x = - \frac{5}{2}\)
b)
\(\begin{array}{l} - \frac{9}{2}x + 21 = 0\\\,\,\,\,\,\,\,\,\, - \frac{9}{2}x = - 21\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 21} \right):\left( { - \frac{9}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{{14}}{3}\end{array}\)
Vậy phương trình có nghiệm \(x = \frac{{14}}{3}\)
Video hướng dẫn giải
Giải phương trình:
\(2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\).
Phương pháp giải:
Dựa vào quy tắc chuyển vế, quy tắc nhân và quy tắc phá ngoặc để giải phương trình.
Lời giải chi tiết:
\(\begin{array}{l}2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\\\,\,\,\,\,2x - 1,4 - 1,6 = 1,5 - x - 1,2\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x - 3 = 0,3 - x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x + x = 0,3 + 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3x = 3,3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1,1.\end{array}\)
Vậy phương trình có nghiệm \(x = 1,1.\)
Video hướng dẫn giải
Kiểm tra xem \(x = - 3\) có là nghiệm của phương trình bậc nhất \(5x + 15 = 0\) hay không.
Phương pháp giải:
Tham khảo Ví dụ 2 Sách giáo khoa Toán 8 – Cánh diều.
Lời giải chi tiết:
Thay \(x = - 3\) vào phương trình ta có: \(5.\left( { - 3} \right) + 15 = - 15 + 15 = 0\)
Vậy \(x = - 3\) là nghiệm của phương trình \(5x + 15 = 0\).
Video hướng dẫn giải
Giải các phương trình:
a) \( - 6x - 15 = 0\);
b) \( - \frac{9}{2}x + 21 = 0.\)
Phương pháp giải:
Dựa vào các quy tắc chuyển vế và quy tắc nhân để giải phương trình.
Lời giải chi tiết:
a)
\(\begin{array}{l} - 6x - 15 = 0\\\,\,\,\,\,\,\,\,\, - 6x = 15\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 15:\left( { - 6} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \frac{5}{2}\end{array}\)
Vậy phương trình có nghiệm \(x = - \frac{5}{2}\)
b)
\(\begin{array}{l} - \frac{9}{2}x + 21 = 0\\\,\,\,\,\,\,\,\,\, - \frac{9}{2}x = - 21\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 21} \right):\left( { - \frac{9}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{{14}}{3}\end{array}\)
Vậy phương trình có nghiệm \(x = \frac{{14}}{3}\)
Video hướng dẫn giải
Nêu quy tắc chuyển vế trong một đẳng thức số.
Phương pháp giải:
Nhớ lại quy tắc chuyển vế trong một đẳng thức số đã được học.
Lời giải chi tiết:
Quy tắc: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó: dấu "+" đổi thành dấu "−" và dấu "−" thành dấu "+".
Mục 2 trong SGK Toán 8 Cánh diều tập trung vào các kiến thức về hình học, cụ thể là các định lý và tính chất liên quan đến tứ giác. Việc nắm vững các kiến thức này là nền tảng để giải quyết các bài tập phức tạp hơn trong chương trình học.
Đề bài: Cho tứ giác ABCD có bốn góc bằng nhau. Chứng minh rằng ABCD là hình chữ nhật.
Lời giải:
Đề bài: Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của AD và N là trung điểm của BC. Chứng minh rằng MN // AB // CD.
Lời giải:
Bài toán này sử dụng kiến thức về đường trung bình của hình thang. Lời giải chi tiết sẽ được trình bày với các bước chứng minh rõ ràng, sử dụng các định lý và tính chất đã học.
Đề bài: Cho hình bình hành ABCD. Gọi E là trung điểm của AB. Chứng minh rằng DE là đường phân giác của góc ADC.
Lời giải:
Để chứng minh DE là đường phân giác của góc ADC, ta cần chứng minh ∠ADE = ∠CDE. Lời giải sẽ dựa trên các tính chất của hình bình hành và các tam giác đồng dạng.
Để giải các bài tập về tứ giác một cách hiệu quả, các em cần:
Trong quá trình học và giải bài tập về tứ giác, các em cần lưu ý:
Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày ở trên, các em học sinh sẽ tự tin hơn trong việc học tập và giải quyết các bài tập về tứ giác trong SGK Toán 8 Cánh diều. Chúc các em học tốt!