Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 94 SGK Toán 8 – Cánh diều. Bài học này thuộc chương trình Toán 8, tập trung vào việc vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Cho hình bình hành ABCD. Gọi M, N, P lần lượt là trung điểm của các đoạn thẳng AB, BC, AN và Q là giao điểm của AN và DM. Chứng minh:
Đề bài
Cho hình bình hành ABCD. Gọi M, N, P lần lượt là trung điểm của các đoạn thẳng AB, BC, AN và Q là giao điểm của AN và DM. Chứng minh:
a) \(MP\parallel AD,\,\,MP = \frac{1}{4}AD\)
b) \(AQ = \frac{2}{5}AN\)
c) Gọi R là trung điểm của CD. Chứng minh ba điểm M, P, R thẳng hàng và \(PR = \frac{3}{4}AD\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Chứng minh MP là đường trung bình của tam giác ABN.
b) Từ \(MP\parallel AD\), sử dụng định lý Thales để chứng minh đẳng thức.
c) Chứng minh \(MR\parallel AD\) và sử dụng các tỉ lệ đã có để chứng minh yêu cầu đề bài.
Lời giải chi tiết
Vì M và P lần lượt là trung điểm của AB và AN nên MP là đường trung bình của tam giác ABN.
\( \Rightarrow MP\parallel BN\) hay \(MP\parallel BC\).
Mà ABCD là hình bình hành nên \(AD\parallel BC\)
\( \Rightarrow MP\parallel AD\)
Ta có: \(MP = \frac{1}{2}NB\)
Mà N là trung điểm BC nên \(NB = \frac{1}{2}BC\)
\( \Rightarrow MP = \frac{1}{4}BC \Rightarrow MP = \frac{1}{4}AD\)
b) Vì \(MP\parallel AD\) nên \(\frac{{MP}}{{AD}} = \frac{{QP}}{{AQ}}\) (hệ quả của định lý Thales)
\( \Rightarrow \frac{{QP}}{{AQ}} = \frac{1}{4} \Rightarrow AQ = 4QP\,\,\left( 1 \right)\)
Ta có: \(QP = AP - AQ = \frac{1}{2}AN - AQ\) (P là trung điểm AN)
Thay vào (1) ta được \(AQ = 4.\left( {\frac{1}{2}AN - AQ} \right)\)
\( \Rightarrow AQ = 2AN - 4AQ \Rightarrow 5AQ = 2AN \Rightarrow AQ = \frac{2}{5}AN\) (đpcm)
c) Vì M và R lần lượt là trung điểm của AB và CD nên \(MR\parallel AD,\,\,MR = AD\)
Mà ta đã chứng minh \(MP\parallel AD\) nên ba điểm M, P, R thẳng hàng.
Theo câu a) ta có \(MP = \frac{1}{4}AD \Rightarrow MP = \frac{1}{4}MR\)
\( \Rightarrow PR = \frac{3}{4}MR \Rightarrow PR = \frac{3}{4}AD\).
Bài 5 trang 94 SGK Toán 8 – Cánh diều là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về các hình khối, đặc biệt là hình hộp chữ nhật và hình lập phương. Bài tập này không chỉ giúp củng cố lý thuyết mà còn rèn luyện kỹ năng giải toán không gian, một kỹ năng cần thiết cho các bài học nâng cao hơn.
Bài 5 trang 94 SGK Toán 8 – Cánh diều thường bao gồm các dạng bài tập sau:
Để giải bài tập bài 5 trang 94 SGK Toán 8 – Cánh diều hiệu quả, các em cần nắm vững các công thức sau:
Bài tập: Một hình hộp chữ nhật có chiều dài 5cm, chiều rộng 3cm và chiều cao 4cm. Tính thể tích và diện tích bề mặt của hình hộp chữ nhật đó.
Giải:
Thể tích của hình hộp chữ nhật là: V = 5 * 3 * 4 = 60 cm3.
Diện tích bề mặt của hình hộp chữ nhật là: S = 2 * (5 * 3 + 3 * 4 + 4 * 5) = 2 * (15 + 12 + 20) = 2 * 47 = 94 cm2.
Khi giải bài tập về hình hộp chữ nhật và hình lập phương, các em cần chú ý:
Để củng cố kiến thức, các em có thể tự giải các bài tập sau:
Bài 5 trang 94 SGK Toán 8 – Cánh diều là một bài tập quan trọng giúp các em hiểu rõ hơn về hình hộp chữ nhật và hình lập phương. Bằng cách nắm vững các công thức và phương pháp giải bài tập, các em có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn hy vọng rằng những lời giải chi tiết và phương pháp giải bài tập trên sẽ giúp các em học tập hiệu quả hơn. Chúc các em học tốt!