Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 8 của giaitoan.edu.vn. Ở đây, chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho tất cả các bài tập trong SGK Toán 8 – Cánh diều, đặc biệt là mục 2 trang 53, 54, 55.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Quan sát Hình 3 và cho biết:
Video hướng dẫn giải
Cho tam giác ABC vuông tại A có CA = 4, CB = 5. Giả sử M, N là hai điểm lần lượt nằm trên hai cạnh CA, CB sao cho CM = 1, CN = 1,25. Tính độ dài đoạn thẳng MN.
Phương pháp giải:
- Sử dụng định lý Thales đảo để chứng minh \(MN\parallel AB\).
- Chứng minh \(MN \bot AC\)
- Sử dụng định lý Pytago để tính độ dài cạnh MN.
Lời giải chi tiết:
Xét tam giác ABC có
\(\begin{array}{l}\frac{{CM}}{{CA}} = \frac{1}{4}\\\frac{{CN}}{{CB}} = \frac{{1,25}}{5} = \frac{1}{4}\\ \Rightarrow \frac{{CM}}{{CA}} = \frac{{CN}}{{CB}}\end{array}\)
\( \Rightarrow MN\parallel AB\) (Định lý Thales đảo)
Mà \(AB \bot AC\) nên \(MN \bot AC\) hay tam giác MNC vuông tại M
Xét tam giác MNC vuông tại M có: \(MC = 1,\,\,NC = 1,25\).
Theo định lý Pytago ta có:
\(\begin{array}{l}M{N^2} + M{C^2} = N{C^2}\\\,\,\,\,\,\,\,M{N^2} + {1^2} = 1,{25^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,M{N^2} = 1,{25^2} - {1^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,M{N^2} = 0,5625\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,MN = 0,75\end{array}\)
Vậy MN = 0,75.
Video hướng dẫn giải
Quan sát Hình 3 và cho biết:
a) Đường thẳng \(d\) có song song với BC hay không?
b) Bằng cách đếm số ô vuông, dự đoán xem các tỉ số \(\frac{{AM}}{{MB}},\frac{{AN}}{{NC}}\) có bằng nhau hay không?
Phương pháp giải:
Quan sát hình và trả lời câu hỏi.
Lời giải chi tiết:
a) Quan sát hình ta thấy \(d\parallel BC\).
b) Ta thấy:
Độ dài AM là 2 lần cạnh của một ô vuông.
Độ dài MB là cạnh của một ô vuông.
\( \Rightarrow \frac{{AM}}{{MB}} = \frac{2}{1} = 2\)
Độ dài AN là 2 lần đường chéo của một ô vuông.
Độ dài NC là độ dài đường chéo của một ô vuông.
\( \Rightarrow \frac{{AN}}{{NC}} = \frac{2}{1} = 2\)
Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).
Video hướng dẫn giải
Trong Hình 4, chứng tỏ rằng nếu \(MN\parallel BC\) thì \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\).
Phương pháp giải:
Dựa vào định lý Thales để chứng minh hai tỉ số bằng nhau.
Lời giải chi tiết:
Xét tam giác ABC với \(MN\parallel BC\), ta có \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\) (định lý Thales).
Video hướng dẫn giải
Cho tam giác ABC có G là trọng tâm. Đường thẳng qua G song song với BC lần lượt cắt AB, AC tại M, N. Chứng minh \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \).
Phương pháp giải:
Sử dụng định lý Thales để chứng minh \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \).
Lời giải chi tiết:
Gọi AD là đường trung tuyến của tam giác ABC (D \(\in\) BC)
Vì G là trọng tâm của tam giác ABC nên AG = \(\frac{2}{3}\) AD hay \(\frac{AG}{AD} =\frac{2}{3}\) .
Xét tam giác ABD với MG // BD, ta có:
\( \frac {AM}{AB} = \frac{AG}{AD} =\frac{2}{3}\) (Định lí Thales) (1)
Tương tự, xét
tam giác ADC với GN // DC, ta có:
\( \frac {AN}{AC} = \frac{AG}{AD} =\frac{2}{3}\) (Định lí Thales) (2)
Từ (1) và (2) suy ra \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \) (đpcm).
Video hướng dẫn giải
Trong Hình 7, cho AM = 1, MB = 2, AN = 1,5, NC = 3.
a) So sánh các tỉ số \(\frac{{AM}}{{MB}};\,\,\frac{{AN}}{{NC}}\).
b) Đường thẳng \(d\) (đi qua M, N) có song song với BC hay không?
Phương pháp giải:
a) Dựa vào số liệu đã cho, tính và so sánh các tỉ số.
b) Quan sát hình vẽ và cho biết đường thẳng \(d\) (đi qua M, N) có song song với BC hay không.
Lời giải chi tiết:
a) \(\frac{{AM}}{{MB}} = \frac{1}{2}\)
\(\frac{{AN}}{{AC}} = \frac{{1,5}}{3} = \frac{1}{2}\)
Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).
b) Qua B kẻ đường thẳng song song với đường thẳng d, cắt AC tại C’.
Xét ∆ABC’ với MN // BC’, ta có:
\( \frac{AM}{MB}=\frac{AN}{NC′}\) (định lí Thalès).
Mà theo câu a, \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) nên ta có \(\frac{{AN}}{{NC}} = \frac{AN}{NC′}\)
Suy ra NC = NC’ hay C và C’ là hai điểm trùng nhau.
Do đó C nằm trên đường thẳng đi qua B và song song với đường thẳng d.
Vậy đường thẳng d (đi qua M, N) song song với BC.
Video hướng dẫn giải
Quan sát Hình 3 và cho biết:
a) Đường thẳng \(d\) có song song với BC hay không?
b) Bằng cách đếm số ô vuông, dự đoán xem các tỉ số \(\frac{{AM}}{{MB}},\frac{{AN}}{{NC}}\) có bằng nhau hay không?
Phương pháp giải:
Quan sát hình và trả lời câu hỏi.
Lời giải chi tiết:
a) Quan sát hình ta thấy \(d\parallel BC\).
b) Ta thấy:
Độ dài AM là 2 lần cạnh của một ô vuông.
Độ dài MB là cạnh của một ô vuông.
\( \Rightarrow \frac{{AM}}{{MB}} = \frac{2}{1} = 2\)
Độ dài AN là 2 lần đường chéo của một ô vuông.
Độ dài NC là độ dài đường chéo của một ô vuông.
\( \Rightarrow \frac{{AN}}{{NC}} = \frac{2}{1} = 2\)
Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).
Video hướng dẫn giải
Trong Hình 4, chứng tỏ rằng nếu \(MN\parallel BC\) thì \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\).
Phương pháp giải:
Dựa vào định lý Thales để chứng minh hai tỉ số bằng nhau.
Lời giải chi tiết:
Xét tam giác ABC với \(MN\parallel BC\), ta có \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\) (định lý Thales).
Video hướng dẫn giải
Cho tam giác ABC có G là trọng tâm. Đường thẳng qua G song song với BC lần lượt cắt AB, AC tại M, N. Chứng minh \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \).
Phương pháp giải:
Sử dụng định lý Thales để chứng minh \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \).
Lời giải chi tiết:
Gọi AD là đường trung tuyến của tam giác ABC (D \(\in\) BC)
Vì G là trọng tâm của tam giác ABC nên AG = \(\frac{2}{3}\) AD hay \(\frac{AG}{AD} =\frac{2}{3}\) .
Xét tam giác ABD với MG // BD, ta có:
\( \frac {AM}{AB} = \frac{AG}{AD} =\frac{2}{3}\) (Định lí Thales) (1)
Tương tự, xét
tam giác ADC với GN // DC, ta có:
\( \frac {AN}{AC} = \frac{AG}{AD} =\frac{2}{3}\) (Định lí Thales) (2)
Từ (1) và (2) suy ra \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \) (đpcm).
Video hướng dẫn giải
Trong Hình 7, cho AM = 1, MB = 2, AN = 1,5, NC = 3.
a) So sánh các tỉ số \(\frac{{AM}}{{MB}};\,\,\frac{{AN}}{{NC}}\).
b) Đường thẳng \(d\) (đi qua M, N) có song song với BC hay không?
Phương pháp giải:
a) Dựa vào số liệu đã cho, tính và so sánh các tỉ số.
b) Quan sát hình vẽ và cho biết đường thẳng \(d\) (đi qua M, N) có song song với BC hay không.
Lời giải chi tiết:
a) \(\frac{{AM}}{{MB}} = \frac{1}{2}\)
\(\frac{{AN}}{{AC}} = \frac{{1,5}}{3} = \frac{1}{2}\)
Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).
b) Qua B kẻ đường thẳng song song với đường thẳng d, cắt AC tại C’.
Xét ∆ABC’ với MN // BC’, ta có:
\( \frac{AM}{MB}=\frac{AN}{NC′}\) (định lí Thalès).
Mà theo câu a, \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) nên ta có \(\frac{{AN}}{{NC}} = \frac{AN}{NC′}\)
Suy ra NC = NC’ hay C và C’ là hai điểm trùng nhau.
Do đó C nằm trên đường thẳng đi qua B và song song với đường thẳng d.
Vậy đường thẳng d (đi qua M, N) song song với BC.
Video hướng dẫn giải
Cho tam giác ABC vuông tại A có CA = 4, CB = 5. Giả sử M, N là hai điểm lần lượt nằm trên hai cạnh CA, CB sao cho CM = 1, CN = 1,25. Tính độ dài đoạn thẳng MN.
Phương pháp giải:
- Sử dụng định lý Thales đảo để chứng minh \(MN\parallel AB\).
- Chứng minh \(MN \bot AC\)
- Sử dụng định lý Pytago để tính độ dài cạnh MN.
Lời giải chi tiết:
Xét tam giác ABC có
\(\begin{array}{l}\frac{{CM}}{{CA}} = \frac{1}{4}\\\frac{{CN}}{{CB}} = \frac{{1,25}}{5} = \frac{1}{4}\\ \Rightarrow \frac{{CM}}{{CA}} = \frac{{CN}}{{CB}}\end{array}\)
\( \Rightarrow MN\parallel AB\) (Định lý Thales đảo)
Mà \(AB \bot AC\) nên \(MN \bot AC\) hay tam giác MNC vuông tại M
Xét tam giác MNC vuông tại M có: \(MC = 1,\,\,NC = 1,25\).
Theo định lý Pytago ta có:
\(\begin{array}{l}M{N^2} + M{C^2} = N{C^2}\\\,\,\,\,\,\,\,M{N^2} + {1^2} = 1,{25^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,M{N^2} = 1,{25^2} - {1^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,M{N^2} = 0,5625\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,MN = 0,75\end{array}\)
Vậy MN = 0,75.
Mục 2 trong chương trình Toán 8 – Cánh diều thường tập trung vào một chủ đề cụ thể, ví dụ như các phép biến đổi đại số, giải phương trình bậc nhất một ẩn, hoặc các bài toán về hình học. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập trong mục này là rất quan trọng để các em có thể tiếp thu các kiến thức phức tạp hơn trong các chương tiếp theo.
Để giúp các em hiểu rõ hơn về nội dung và phương pháp giải các bài tập trong mục 2 trang 53, 54, 55 SGK Toán 8 – Cánh diều, chúng tôi sẽ trình bày chi tiết lời giải của từng bài tập:
(Nêu lại đề bài đầy đủ)
Lời giải:
(Giải chi tiết bài tập, bao gồm các bước thực hiện, giải thích rõ ràng và sử dụng các ký hiệu toán học chính xác)
(Nêu lại đề bài đầy đủ)
Lời giải:
(Giải chi tiết bài tập, bao gồm các bước thực hiện, giải thích rõ ràng và sử dụng các ký hiệu toán học chính xác)
(Nêu lại đề bài đầy đủ)
Lời giải:
(Giải chi tiết bài tập, bao gồm các bước thực hiện, giải thích rõ ràng và sử dụng các ký hiệu toán học chính xác)
Ngoài SGK Toán 8 – Cánh diều, các em có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải toán:
Hy vọng rằng với lời giải chi tiết và các hướng dẫn hữu ích trên đây, các em sẽ tự tin hơn trong việc giải các bài tập mục 2 trang 53, 54, 55 SGK Toán 8 – Cánh diều. Chúc các em học tập tốt!