Bài 10 trang 29 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 10 trang 29 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Cặp số nào sau đây là nghiệm của hệ bất phương trình
Đề bài
Cặp số nào sau đây là nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - 2y < 0}\\{x + 3y > - 2}\\{ - x + y < 3}\end{array}} \right.\)
A. \(\left( {1;0} \right)\) B. \(\left( { - 1;0} \right)\) C. \(\left( { - 2;3} \right)\) D. \(\left( {0; - 1} \right)\)
Phương pháp giải - Xem chi tiết
Thay cặp số (x;y)=(a;b) vào từng bất phương trình trong hệ.
Cặp số (a;b) là nghiệm nếu ta được ba mệnh đề đúng.
Lời giải chi tiết
Ta xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x - 2y < 0\left( 1 \right)}\\{x + 3y > - 2\left( 2 \right)}\\{ - x + y < 3\left( 3 \right)}\end{array}} \right.\)
+) Thay x = 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 1 – 2.0 < 0 ⇔ 1 < 0 (vô lí)
Do đó cặp số (1; 0) không là nghiệm của hệ bất phương trình đã cho.
+) Thay x = – 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ – 1 – 2.0 < 0 ⇔ – 1 < 0 (luôn đúng)
(2) ⇔ – 1 + 3.0 > – 2 ⇔ – 1 > – 2 (luôn đúng)
(3) ⇔ 1 + 0 < 3 ⇔ 1 < 3 (luôn đúng).
Do đó cặp số (– 1; 0) là nghiệm của hệ bất phương trình đã cho.
+) Thay x = – 2 và y = 3 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(3) ⇔ 2 + 3 < 3 ⇔ 5 < 3 (vô lí).
Do đó cặp số (– 2; 3) không là nghiệm của hệ bất phương trình đã cho.
+) Thay x = 0 và y = – 1 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 0 – 2.(– 1) < 0 ⇔ 2 < 0 (vô lí);
Do đó cặp số (0; – 1) không là nghiệm của hệ bất phương trình đã cho.
Vậy (– 1; 0) là nghiệm của hệ phương trình đã cho.
Chọn B
Bài 10 trang 29 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Bài 10 trang 29 SBT Toán 10 Cánh Diều thường bao gồm các dạng bài tập sau:
Để giải quyết từng dạng bài tập, học sinh cần:
Ví dụ: Cho tam giác ABC, với A(1;2), B(3;4), C(5;0). Tính độ dài cạnh BC.
Giải:
Vectơ BC = (5-3; 0-4) = (2; -4)
Độ dài cạnh BC = |BC| = √((2)^2 + (-4)^2) = √(4 + 16) = √20 = 2√5
Sau khi nắm vững phương pháp giải bài 10 trang 29 SBT Toán 10 Cánh Diều, học sinh nên luyện tập thêm với các bài tập tương tự để củng cố kiến thức và rèn luyện kỹ năng. Các bài tập này có thể tìm thấy trong sách bài tập Toán 10 Cánh Diều hoặc trên các trang web học toán online.
Bài 10 trang 29 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học. Bằng cách nắm vững kiến thức cơ bản, áp dụng các phương pháp giải đúng đắn và luyện tập thường xuyên, học sinh có thể giải quyết bài tập này một cách dễ dàng và hiệu quả.