Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 74 trang 107 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học Toán 10 một cách tốt nhất.
Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Tính:
Đề bài
Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Tính:
a) sin\(\widehat {ABC}\)
b) Diện tích tam giác ABC
c) Độ dài trung tuyến AM
Phương pháp giải - Xem chi tiết
Bước 1: Sử dụng định lí cos để tính cos\(\widehat {ABC}\)
Bước 2: Sử dụng công thức lượng giác cơ bản để tính sin\(\widehat {ABC}\)
Bước 3: Sử dụng công thức \(S = \frac{1}{2}AB.BC.\sin B\) để tính diện tích tam giác ABC
Bước 4: Sử dụng công thức \(m_A^2 = \frac{{A{B^2} + A{C^2}}}{2} - \frac{{B{C^2}}}{4}\)để tính độ dài trung tuyến AM
Lời giải chi tiết
a) Ta có: \(\cos \widehat {ABC} = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} = \frac{1}{5}\)
Mặt khác, \({\sin ^2}\widehat {ABC} + {\cos ^2}\widehat {ABC} = 1 \Rightarrow {\sin ^2}\widehat {ABC} = \frac{{24}}{{25}}\) \( \Rightarrow \sin \widehat {ABC} = \frac{{2\sqrt 6 }}{5}\) (Do \({0^0} < \widehat {ABC} < {180^0}\))
b) Diện tích ∆ABC là: \(S = \frac{1}{2}AB.BC.\sin \widehat {ABC} = \frac{1}{2}.5.6.\frac{{2\sqrt 6 }}{5} = 6\sqrt 6 \)
c) Gọi AM là một đường trung tuyến của ∆ABC, ta có:
\(A{M^2} = \frac{{A{B^2} + A{C^2}}}{2} - \frac{{B{C^2}}}{4} = 28\) \( \Rightarrow AM = 2\sqrt 7 \)
Bài 74 trang 107 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 74 thường bao gồm các dạng bài tập sau:
Để giải bài 74 trang 107 SBT Toán 10 - Cánh Diều một cách hiệu quả, bạn cần:
Ví dụ minh họa (giả định):
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: AB + AC = 2AM
Lời giải:
Vì M là trung điểm của BC, ta có: BM = MC. Do đó, BC = 2BM.
Ta có: AB + AC = AB + AM + MC = AB + AM + BM = AB + AM + (BC/2)
Áp dụng quy tắc hình bình hành, ta có: AB + AC = 2AM
Để củng cố kiến thức về vectơ và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo các bài tập tương tự sau:
Dưới đây là một số mẹo giúp bạn giải bài tập vectơ hiệu quả hơn:
Bài 74 trang 107 SBT Toán 10 - Cánh Diều là một bài tập quan trọng giúp bạn hiểu sâu hơn về vectơ và ứng dụng của nó trong hình học. Hy vọng với lời giải chi tiết và các hướng dẫn trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!