Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 40 trang 17 Sách bài tập Toán 10 - Cánh Diều. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp học tập tốt nhất, hỗ trợ bạn giải quyết mọi khó khăn trong môn Toán.
Trong các phát biểu sau, phát biểu nào sai?
Đề bài
Trong các phát biểu sau, phát biểu nào sai?
A. \(C_n^k = \frac{{n!}}{{(n - k)!}}\) với k, n là các số tự nhiên, \(0 \le k \le n\)
B. \(A_n^k = \frac{{n!}}{{(n - k)!}}\) với k, n là các số tự nhiên, \(1 \le k \le n\)
C. \({P_n} = n!\) với n là số nguyên dương
D. \({(a - b)^5} = {a^5} - 5{a^4}b + 10{a^3}{b^2} - 10{a^2}{b^3} + 5a{b^4} - {b^5}\)
Phương pháp giải - Xem chi tiết
Áp dụng các công thức hoán vị, chỉnh hợp, tổ hợp, khai triển \({(a - b)^5}\) để tìm câu đúng
Lời giải chi tiết
Ta có: \(C_n^k = \frac{{n!}}{{k!(n - k)!}}\) với k, n là các số tự nhiên, \(0 \le k \le n\). Do đó phương án A sai
® Chọn A
Bài 40 trang 17 Sách bài tập Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 40 thường bao gồm các dạng bài tập sau:
Để giải bài 40 trang 17 Sách bài tập Toán 10 - Cánh Diều một cách hiệu quả, bạn cần:
Ví dụ 1: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Giải:
Ta có: AM = (AB + AC) / 2. Suy ra: 2AM = AB + AC.
Ngoài Sách bài tập Toán 10 - Cánh Diều, bạn có thể tham khảo thêm các tài liệu sau:
Bài 40 trang 17 Sách bài tập Toán 10 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ và các ứng dụng của vectơ trong hình học. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!