Logo Header
  1. Môn Toán
  2. Giải bài 20 trang 52 SBT toán 10 - Cánh diều

Giải bài 20 trang 52 SBT toán 10 - Cánh diều

Giải bài 20 trang 52 SBT Toán 10 - Cánh Diều

Bài 20 trang 52 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 20 trang 52 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Trong các phát biểu sau, phát biểu nào là sai?

Đề bài

Trong các phát biểu sau, phát biểu nào là sai?

A. \({x^2} - x - 2 > 0\) khi và chỉ khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\)

B. \({x^2} - x - 2 \le 0\) khi và chỉ khi \(x \in \left[ { - 1;2} \right]\)

C. \({x^2} - x - 2 < 0\) khi và chỉ khi \(x \in \left( { - 1;2} \right)\)

D. \({x^2} - x - 2 \ge 0\) khi và chỉ khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 20 trang 52 SBT toán 10 - Cánh diều 1

Xét dấu tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right),\Delta = {b^2} - 4ac\)

+ Nếu \(\Delta < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\)

+ Nếu \(\Delta = 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)

+ Nếu \(\Delta > 0\) thì \(f\left( x \right)\) có hai nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:

\(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x\) thuộc các khoảng \(\left( { - \infty ;{x_1}} \right) \cup \left( {{x_2}; + \infty } \right)\)

\(f\left( x \right)\) trái dấu với hệ số \(a\) với mọi \(x\) thuộc khoảng \(\left( {x{ & _1};{x_2}} \right)\)

Lời giải chi tiết

Xét hàm số \(f\left( x \right) = {x^2} - x - 2\) có \(a = 1;b = - 1,c = 2 \Rightarrow \Delta = {b^2} - 4ac = {\left( { - 1} \right)^2} - 4.1.2 = - 7\)

Đồ thị hàm số có \(a = 1 > 0\)

\( \Rightarrow {x^2} - x - 2 < 0\) khi \(x \in \left( { - 1;2} \right)\)

Và \({x^2} - x - 2 > 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\)

\( \Rightarrow {x^2} - x - 2 \le 0\) khi \(x \in \left[ { - 1;2} \right]\)

Và \({x^2} - x - 2 \ge 0\) khi \(x \in ( - \infty ; - 1] \cup [2; + \infty )\)

Chọn D.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 20 trang 52 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 20 trang 52 SBT Toán 10 - Cánh Diều: Hướng dẫn chi tiết và phương pháp giải

Bài 20 trang 52 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Vectơ: Định nghĩa, các yếu tố của vectơ, sự bằng nhau của hai vectơ.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Ứng dụng của vectơ: Biểu diễn các điểm, đường thẳng, đoạn thẳng bằng vectơ.

Nội dung bài 20 trang 52 SBT Toán 10 - Cánh Diều

Bài 20 thường bao gồm các dạng bài tập sau:

  1. Tìm tọa độ của vectơ: Cho các điểm, tìm tọa độ của vectơ tạo bởi chúng.
  2. Thực hiện các phép toán vectơ: Tính tổng, hiệu, tích của các vectơ.
  3. Chứng minh các đẳng thức vectơ: Sử dụng các quy tắc phép toán vectơ để chứng minh các đẳng thức.
  4. Ứng dụng vectơ vào hình học: Chứng minh các tính chất hình học, tìm tâm của đường tròn, trọng tâm của tam giác.

Lời giải chi tiết bài 20 trang 52 SBT Toán 10 - Cánh Diều

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 20 trang 52 SBT Toán 10 Cánh Diều, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Nội dung giải chi tiết từng câu hỏi sẽ được trình bày ở đây, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)

Ví dụ: Câu a)

Cho A(1; 2) và B(3; 4). Tìm tọa độ của vectơ AB.

Giải:

Vectơ AB có tọa độ là (3 - 1; 4 - 2) = (2; 2).

Ví dụ: Câu b)

Cho vectơ a = (1; -2) và vectơ b = (3; 1). Tính vectơ a + b.

Giải:

Vectơ a + b có tọa độ là (1 + 3; -2 + 1) = (4; -1).

Phương pháp giải bài tập về vectơ

Để giải tốt các bài tập về vectơ, học sinh cần:

  • Nắm vững định nghĩa và tính chất của vectơ.
  • Thành thạo các phép toán vectơ.
  • Biết cách áp dụng vectơ vào giải quyết các bài toán hình học.
  • Luyện tập thường xuyên để rèn luyện kỹ năng.

Mở rộng kiến thức

Ngoài bài 20 trang 52 SBT Toán 10 Cánh Diều, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách giáo khoa và sách bài tập để củng cố kiến thức. Bên cạnh đó, việc tìm hiểu các ứng dụng thực tế của vectơ trong các lĩnh vực khác như vật lý, kỹ thuật cũng sẽ giúp các em hiểu sâu hơn về tầm quan trọng của vectơ.

Tổng kết

Bài 20 trang 52 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin hơn khi đối mặt với bài tập này và các bài tập tương tự trong tương lai.

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng.
Tọa độ vectơCác số thực biểu diễn vectơ trong hệ tọa độ.

Tài liệu, đề thi và đáp án Toán 10