Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 66 trang 106 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học Toán 10 một cách tốt nhất. Hãy cùng bắt đầu nhé!
Một máy bay đang bay từ hướng đông sang hướng tây với tốc độ 650 km/h thì gặp luồng gió thổi từ hướng đông bắc sang hướng tây nam với tốc độ 35 km/h.
Đề bài
Một máy bay đang bay từ hướng đông sang hướng tây với tốc độ 650 km/h thì gặp luồng gió thổi từ hướng đông bắc sang hướng tây nam với tốc độ 35 km/h. Máy bay bị thay đổi vận tốc sau khi gặp gió thổi. Tìm tốc độ mới của máy bay (làm tròn kết quả đến hàng phần mười theo đơn vị km/h).
Phương pháp giải - Xem chi tiết
Bước 1: Đặt \(\overrightarrow {{v_0}} \) là vận tốc của máy bay khi không có gió, tính độ dài vectơ \(\overrightarrow {{v_0}} \); \(\overrightarrow {{v_1}} \) là vận tốc của gió, tính độ dài vectơ \(\overrightarrow {{v_1}} \); \(\overrightarrow {{v_2}} \) là vận tốc của máy bay khi có gió
Bước 2: Tìm mối liên hệ giữa \(\overrightarrow {{v_0}} \); \(\overrightarrow {{v_1}} \); \(\overrightarrow {{v_2}} \)
Bước 3: Sử dụng các quy tắc vectơ và tích vô hướng của hai vectơ để tính độ dài vectơ \(\overrightarrow {{v_2}} \)
Lời giải chi tiết
Gọi \(\overrightarrow {{v_0}} \) là vận tốc của máy bay khi không có gió \( \Rightarrow \left| {\overrightarrow {{v_0}} } \right| = 650\) (km/h)
\(\overrightarrow {{v_1}} \) là vận tốc của gió \( \Rightarrow \left| {\overrightarrow {{v_1}} } \right| = 35\) (km/h)
\(\overrightarrow {{v_2}} \) là vận tốc của máy bay khi có gió
Theo giả thiết, \(\overrightarrow {{v_2}} = \overrightarrow {{v_0}} + \overrightarrow {{v_1}} \) \( \Rightarrow {\left| {\overrightarrow {{v_2}} } \right|^2} = {\overrightarrow {{v_2}} ^2} = {\left( {\overrightarrow {{v_0}} + \overrightarrow {{v_1}} } \right)^2}\)\( = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\overrightarrow {{v_0}} .\overrightarrow {{v_1}} \)
\( = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\left| {\overrightarrow {{v_0}} } \right|.\left| {\overrightarrow {{v_1}} } \right|.\cos \left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right)\)
Mà \(\left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right) = {45^0}\) nên \({\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\left| {\overrightarrow {{v_0}} } \right|.\left| {\overrightarrow {{v_1}} } \right|.\cos \left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right) = {650^2} + {35^2} + 2.650.35.\cos {45^0}\)\( \approx 455898,36\)
\( \Rightarrow \left| {\overrightarrow {{v_2}} } \right| \approx 675,2\) (km/h)
Vậy tốc độ mới của máy bay là 675,2 km/h
Bài 66 trang 106 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 66 thường bao gồm các dạng bài tập sau:
Để giải bài 66 trang 106 SBT Toán 10 - Cánh Diều, chúng ta cần thực hiện các bước sau:
Ví dụ minh họa:
Cho A(1; 2), B(3; 4), C(5; 6). Tìm tọa độ của vectơ AB và AC.
Giải:
Vectơ AB có tọa độ là (3 - 1; 4 - 2) = (2; 2).
Vectơ AC có tọa độ là (5 - 1; 6 - 2) = (4; 4).
Sau khi giải bài 66 trang 106 SBT Toán 10 - Cánh Diều, bạn có thể luyện tập thêm với các bài tập tương tự để củng cố kiến thức. Một số bài tập gợi ý:
Khi giải bài tập về vectơ, bạn cần lưu ý những điều sau:
Bài 66 trang 106 SBT Toán 10 - Cánh Diều là một bài tập quan trọng giúp bạn hiểu rõ hơn về vectơ và ứng dụng của nó trong hình học. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!
Khái niệm | Mô tả |
---|---|
Vectơ | Một đoạn thẳng có hướng. |
Tọa độ vectơ | Cặp số (x; y) biểu diễn vectơ. |
Phép cộng vectơ | Quy tắc hình bình hành. |