Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải quyết bài 76 trang 107 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn hiểu rõ bản chất của bài toán và áp dụng kiến thức vào thực tế.
Cho tam giác ABC có AB = 4, AC = 5, \(\widehat {BAC}\) = 120°. Điểm M là trung điểm của đoạn thẳng BC, điểm D thoả mãn \(\overrightarrow {AD} = \frac{2}{5}\overrightarrow {AC} \). Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) và chứng minh \(AM \bot BD\)
Đề bài
Cho tam giác ABC có AB = 4, AC = 5, \(\widehat {BAC}\) = 120°. Điểm M là trung điểm của đoạn thẳng BC, điểm D thoả mãn \(\overrightarrow {AD} = \frac{2}{5}\overrightarrow {AC} \). Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) và chứng minh \(AM \bot BD\)
Phương pháp giải - Xem chi tiết
Bước 1: Sử dụng định nghĩa tích vô hướng của hai vectơ để tính \(\overrightarrow {AB} .\overrightarrow {AC} \)
Bước 2: Sử dụng tích chất trung điểm của đoạn thẳng và tách các vectơ rồi sử dụng định nghĩa tích vô hướng của hai vectơ để biến đổi tích vô hướng \(\overrightarrow {AM} .\overrightarrow {BD} \)
Bước 3: Chứng minh \(\overrightarrow {AM} .\overrightarrow {BD} = 0\)rồi kết luận
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \widehat {BAC} = 4.5.\cos {120^0} = - 10\)
b) Do M là trung điểm BC nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\); \(AD = \frac{2}{5}AC = 2\)
Xét \(\overrightarrow {AM} .\overrightarrow {BD} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)\( = \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AD} - \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AD} - \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} \)
\( = \frac{1}{2}AB.AD.\cos \widehat {BAD} - \frac{1}{2}A{B^2} + \frac{1}{2}.\frac{2}{5}A{C^2} - \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AC} \)
\( = \frac{1}{2}.4.2.\cos {120^0} - \frac{1}{2}{.4^2} + \frac{1}{5}{.5^2} - \frac{1}{2}.( - 10) = 0\)
\( \Rightarrow \overrightarrow {AM} .\overrightarrow {BD} = 0 \Rightarrow AM \bot BD\)
Bài 76 trang 107 SBT Toán 10 Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong mặt phẳng để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 76 thường bao gồm các dạng bài tập sau:
Để giải bài 76 trang 107 SBT Toán 10 Cánh Diều một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 76 (giả sử bài 76 có nhiều phần):
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: AB + AC = 2AM
Lời giải:
Vì M là trung điểm của BC, ta có: BM = MC. Do đó, BC = 2BM.
Áp dụng quy tắc cộng vectơ, ta có:
AB + AC = AB + (AM + MC) = AB + AM + MC
Vì BM = MC, ta có MC = -BM. Thay vào biểu thức trên, ta được:
AB + AC = AB + AM - BM
Ta có AB + BM = AM, suy ra BM = AM - AB. Thay vào biểu thức trên, ta được:
AB + AC = AB + AM - (AM - AB) = AB + AM - AM + AB = 2AB
(Lưu ý: Đây chỉ là một ví dụ minh họa. Lời giải cụ thể sẽ phụ thuộc vào nội dung của từng phần của bài 76.)
Cho hình bình hành ABCD. Tìm vectơ AD biết AB = a và BC = b.
Lời giải:
Trong hình bình hành ABCD, ta có AD = BC. Do đó, AD = b.
Để củng cố kiến thức về vectơ, bạn có thể tham khảo các bài tập tương tự sau:
Bài 76 trang 107 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về vectơ trong giải quyết các bài toán hình học. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trong bài viết này, bạn sẽ tự tin hơn khi đối mặt với bài tập này.
Chúc bạn học tốt!