Bài 56 trang 100 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho tam giác ABC. Lấy các điểm A', B', C' không trùng với đỉnh của tam giác và
Đề bài
Cho tam giác ABC. Lấy các điểm A', B', C' không trùng với đỉnh của tam giác và
lần lượt thuộc các cạnh AB, BC, CA thoả mãn \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}}\). Chứng minh hai tam giác ABC và A'B'C' có cùng trọng tâm.
Phương pháp giải - Xem chi tiết
Bước 1: Gọi G là trọng tâm tam giác ABC, G’ là trọng tâm tam giác A’B’C’. Biến đổi biểu thức \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} \) sao cho xuất hiện vectơ \(\overrightarrow {GG'} \) (sử dụng các quy tắc vectơ)
Bước 2: Sử dụng giả thiết \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}}\)biểu diễn các vectơ \(\overrightarrow {AA'} ,\overrightarrow {BB'} ,\overrightarrow {CC'} \) theo \(\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {CA} \)
Bước 3: Chứng minh \(\overrightarrow {GG'} = \overrightarrow 0 \) rồi kết luận
Lời giải chi tiết
Gọi G là trọng tâm tam giác ABC, G’ là trọng tâm tam giác A’B’C’.
Khi đó \(\left\{ \begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\\overrightarrow {GA'} + \overrightarrow {GB'} + \overrightarrow {GC'} = \overrightarrow 0 \end{array} \right.\)
Xét \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow {AG} + \overrightarrow {GG'} + \overrightarrow {G'A'} + \overrightarrow {BG} + \overrightarrow {GG'} + \overrightarrow {G'B'} + \overrightarrow {CG} + \overrightarrow {GG'} + \overrightarrow {G'C'} \)
\( = \left( {\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right) + \left( {\overrightarrow {GA'} + \overrightarrow {GB'} + \overrightarrow {GC'} } \right) + 3\overrightarrow {GG'} = 3\overrightarrow {GG'} \) (1)
Mặt khác, đặt \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}} = k \Rightarrow \left\{ \begin{array}{l}AA' = kAB\\BB' = kBC\\CC' = kCA\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AA'} = k\overrightarrow {AB} \\\overrightarrow {BB'} = k\overrightarrow {BC} \\\overrightarrow {CC'} = k\overrightarrow {CA} \end{array} \right.\) (2)
Từ (1) và (2) suy ra \(3\overrightarrow {GG'} = k\overrightarrow {AB} + k\overrightarrow {BC} + k\overrightarrow {CA} = k\left( {\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} } \right) = \overrightarrow 0 \) \( \Rightarrow \overrightarrow {GG'} = \overrightarrow 0 \)
Do đó G và G’ trùng nhau. Vậy hai tam giác ABC và A'B'C' có cùng trọng tâm.
Bài 56 trang 100 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài tập 56 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi xin trình bày lời giải chi tiết như sau:
(Ở đây sẽ là lời giải chi tiết của bài tập 56, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Lời giải sẽ được trình bày theo từng bước, sử dụng các ký hiệu toán học và hình vẽ minh họa để giúp học sinh dễ dàng theo dõi.)
Để hiểu rõ hơn về cách áp dụng các kiến thức vectơ vào giải bài tập, chúng ta hãy xem xét một ví dụ minh họa sau:
(Ở đây sẽ là một ví dụ tương tự bài 56, được giải chi tiết để học sinh có thể tham khảo và áp dụng vào các bài tập khác.)
Ngoài bài tập 56, học sinh có thể tham khảo thêm các bài tập tương tự trong SBT Toán 10 Cánh Diều để rèn luyện kỹ năng giải toán. Bên cạnh đó, học sinh cũng nên tìm hiểu thêm về các ứng dụng của vectơ trong các lĩnh vực khác như vật lý, kỹ thuật,…
Bài 56 trang 100 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, học sinh sẽ hiểu rõ hơn về cách giải bài tập này và tự tin làm bài tập.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng, xác định bởi điểm gốc và điểm cuối. |
Tích vô hướng | Một phép toán giữa hai vectơ, cho kết quả là một số thực. |