Logo Header
  1. Môn Toán
  2. Giải bài 56 trang 100 SBT toán 10 - Cánh diều

Giải bài 56 trang 100 SBT toán 10 - Cánh diều

Giải bài 56 trang 100 SBT Toán 10 - Cánh Diều

Bài 56 trang 100 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho tam giác ABC. Lấy các điểm A', B', C' không trùng với đỉnh của tam giác và

Đề bài

Cho tam giác ABC. Lấy các điểm A', B', C' không trùng với đỉnh của tam giác và

lần lượt thuộc các cạnh AB, BC, CA thoả mãn \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}}\). Chứng minh hai tam giác ABCA'B'C' có cùng trọng tâm.

Phương pháp giải - Xem chi tiếtGiải bài 56 trang 100 SBT toán 10 - Cánh diều 1

Bước 1: Gọi G là trọng tâm tam giác ABC, G’ là trọng tâm tam giác A’B’C’. Biến đổi biểu thức \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} \) sao cho xuất hiện vectơ \(\overrightarrow {GG'} \) (sử dụng các quy tắc vectơ)

Bước 2: Sử dụng giả thiết \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}}\)biểu diễn các vectơ \(\overrightarrow {AA'} ,\overrightarrow {BB'} ,\overrightarrow {CC'} \) theo \(\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {CA} \)

Bước 3: Chứng minh \(\overrightarrow {GG'} = \overrightarrow 0 \) rồi kết luận

Lời giải chi tiết

Gọi G là trọng tâm tam giác ABC, G’ là trọng tâm tam giác A’B’C’.

Khi đó \(\left\{ \begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\\overrightarrow {GA'} + \overrightarrow {GB'} + \overrightarrow {GC'} = \overrightarrow 0 \end{array} \right.\)

Xét \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow {AG} + \overrightarrow {GG'} + \overrightarrow {G'A'} + \overrightarrow {BG} + \overrightarrow {GG'} + \overrightarrow {G'B'} + \overrightarrow {CG} + \overrightarrow {GG'} + \overrightarrow {G'C'} \)

\( = \left( {\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right) + \left( {\overrightarrow {GA'} + \overrightarrow {GB'} + \overrightarrow {GC'} } \right) + 3\overrightarrow {GG'} = 3\overrightarrow {GG'} \) (1)

Mặt khác, đặt \(\frac{{AA'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}} = k \Rightarrow \left\{ \begin{array}{l}AA' = kAB\\BB' = kBC\\CC' = kCA\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AA'} = k\overrightarrow {AB} \\\overrightarrow {BB'} = k\overrightarrow {BC} \\\overrightarrow {CC'} = k\overrightarrow {CA} \end{array} \right.\) (2)

Từ (1) và (2) suy ra \(3\overrightarrow {GG'} = k\overrightarrow {AB} + k\overrightarrow {BC} + k\overrightarrow {CA} = k\left( {\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} } \right) = \overrightarrow 0 \) \( \Rightarrow \overrightarrow {GG'} = \overrightarrow 0 \)

Do đó GG’ trùng nhau. Vậy hai tam giác ABCA'B'C' có cùng trọng tâm.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 56 trang 100 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 56 trang 100 SBT Toán 10 - Cánh Diều: Hướng dẫn chi tiết và lời giải

Bài 56 trang 100 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để tính góc giữa hai vectơ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, giải các bài toán về hình học phẳng và không gian.

Nội dung bài tập 56 trang 100 SBT Toán 10 - Cánh Diều

Bài tập 56 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ trong hình.
  2. Thực hiện các phép toán vectơ để tìm các vectơ mới.
  3. Sử dụng tích vô hướng để tính góc giữa các vectơ.
  4. Chứng minh các đẳng thức vectơ.
  5. Giải các bài toán liên quan đến hình học phẳng và không gian.

Lời giải chi tiết bài 56 trang 100 SBT Toán 10 - Cánh Diều

Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi xin trình bày lời giải chi tiết như sau:

(Ở đây sẽ là lời giải chi tiết của bài tập 56, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Lời giải sẽ được trình bày theo từng bước, sử dụng các ký hiệu toán học và hình vẽ minh họa để giúp học sinh dễ dàng theo dõi.)

Ví dụ minh họa

Để hiểu rõ hơn về cách áp dụng các kiến thức vectơ vào giải bài tập, chúng ta hãy xem xét một ví dụ minh họa sau:

(Ở đây sẽ là một ví dụ tương tự bài 56, được giải chi tiết để học sinh có thể tham khảo và áp dụng vào các bài tập khác.)

Mở rộng kiến thức

Ngoài bài tập 56, học sinh có thể tham khảo thêm các bài tập tương tự trong SBT Toán 10 Cánh Diều để rèn luyện kỹ năng giải toán. Bên cạnh đó, học sinh cũng nên tìm hiểu thêm về các ứng dụng của vectơ trong các lĩnh vực khác như vật lý, kỹ thuật,…

Lưu ý khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng đúng các ký hiệu toán học.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Rèn luyện thường xuyên để nắm vững kiến thức và kỹ năng.

Tổng kết

Bài 56 trang 100 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, học sinh sẽ hiểu rõ hơn về cách giải bài tập này và tự tin làm bài tập.

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng, xác định bởi điểm gốc và điểm cuối.
Tích vô hướngMột phép toán giữa hai vectơ, cho kết quả là một số thực.

Tài liệu, đề thi và đáp án Toán 10