Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 55 trang 89 trong sách bài tập (SBT) Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và phù hợp với chương trình học Toán 10 hiện hành. Hãy cùng bắt đầu nhé!
Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C): (x + 2)2 + (y − 3)2 = 4 trong mỗi trường hợp sau:
Đề bài
Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C): (x + 2)2 + (y − 3)2 = 4 trong mỗi trường hợp sau:
a) ∆ tiếp xúc (C) tại điểm có tung độ bằng 3
b) ∆ vuông góc với đường thẳng 5x – 12y + 1 = 0
c) ∆ đi qua điểm D(0 ; 4)
Phương pháp giải - Xem chi tiết
Bước 1: Tìm tọa độ tâm I của (C)
Bước 2:
a) Tham số hóa và xác định tọa độ tiếp điểm và VTPT của tiếp tuyến
b)
- Xác định tọa độ VTPT của tiếp tuyến, viết PTTQ với VTPT vừa tìm được
- Sử dụng công thức khoảng cách để tìm hệ số tự do trong PT tiếp tuyến
c)
- Viết PTTQ của tiếp tuyến biết điểm đi qua D(0 ; 4) và biểu diễn hệ số tự do theo tọa độ của VTPT
- Sử dụng công thức khoảng cách để tìm tọa độ VTPT
Bước 3: Viết PT tiếp tuyến của (C) với các yếu tố tìm được ở bước 2
Lời giải chi tiết
(C) có tâm I(-2 ; 3), bán kính R = 2
a) Theo giả thiết, điểm M(m; 3) là tiếp điểm của ∆ và (C)
Ta có: \(IM = 2 \Leftrightarrow I{M^2} = 4 \Leftrightarrow {(m + 2)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}m + 2 = 2\\m + 2 = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = - 4\end{array} \right.\)
Với m = 0 thì M(0 ; 3) \( \Rightarrow \)∆ đi qua M và nhận \(\overrightarrow {IM} = (2;0)\) làm VTPT nên có PT: x = 0
Với m = -4 thì M(-4 ; 3) \( \Rightarrow \)∆ đi qua M và nhận \(\overrightarrow {IM} = ( - 2;0)\) làm VTPT nên có PT: x + 4 = 0
b) Theo giả thiết, ∆ vuông góc với đường thẳng d: 5x – 12y + 1 = 0 mà d có VTPT \(\overrightarrow {{n_d}} = (5; - 12)\)
\( \Rightarrow \Delta \) nhận \(\overrightarrow n = (12;5)\) làm VTPT \( \Rightarrow \Delta \) có PTTQ: 12x + 5y + c = 0
Ta có: \(d(I,\Delta ) = R \Leftrightarrow \frac{{\left| {12.( - 2) + 5.3 + c} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = 2\)\( \Leftrightarrow \left| {c - 9} \right| = 26 \Leftrightarrow \left[ \begin{array}{l}c - 9 = 26\\c - 9 = - 26\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 35\\c = - 17\end{array} \right.\)
Với c = 35 thì ∆ có PT: 12x + 5y + 35 = 0
Với c = -17 thì ∆ có PT: 12x + 5y – 17 = 0
c) Giả sử ∆ có PTTQ: \(ax + by + c = 0\)
Ta có: \(D(0;4) \in \Delta \Rightarrow 4b + c = 0 \Leftrightarrow c = - 4b\)\( \Rightarrow \Delta :ax + by - 4b = 0\)
Ta có: \(d(I,\Delta ) = R \Leftrightarrow \frac{{\left| { - 2a + 3b - 4b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)\( \Leftrightarrow \left| { - 2a - b} \right| = 2\sqrt {{a^2} + {b^2}} \)
\( \Leftrightarrow 4{a^2} + 4ab + {b^2} = 4({a^2} + {b^2}) \Leftrightarrow 3{b^2} = 4ab \Leftrightarrow \left[ \begin{array}{l}b = 0\\3b = 4a\end{array} \right.\)
Với b = 0, chọn a = 1 \( \Rightarrow \Delta \) có PT: x = 0
Với 3b = 4a, chọn a = 3, b = 4 \( \Rightarrow \Delta \) có PT:3x + 4y – 16 = 0
Bài 55 trang 89 SBT Toán 10 - Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học hoặc đại số.
Bài 55 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng phần của bài 55. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày một ví dụ minh họa.)
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
Lời giải:
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự sau:
Hy vọng rằng, với lời giải chi tiết và các hướng dẫn trên, bạn đã có thể tự tin giải bài 55 trang 89 SBT Toán 10 - Cánh Diều. Hãy tiếp tục luyện tập và khám phá thêm nhiều kiến thức thú vị khác trong môn Toán nhé!
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng. |
Phép cộng vectơ | Quy tắc hình bình hành hoặc quy tắc tam giác. |
Tích của một số với vectơ | Làm thay đổi độ dài của vectơ. |
Bảng tóm tắt các khái niệm cơ bản về vectơ. |