Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 46 trang 92 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.
Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp của tam giác, D là điểm đối xứng với H qua O. Chứng minh \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HD} \)
Đề bài
Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp của tam giác, D là điểm đối xứng với H qua O. Chứng minh \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HD} \)
Phương pháp giải - Xem chi tiết
Bước 1: Lấy E đối xứng với A qua O
Bước 2: Chứng minh các tứ giác ADEH, BHCE là hình bình hành
Bước 3: Áp dụng quy tắc hình bình hành để chứng minh \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HD} \)
Lời giải chi tiết
Gọi E là điểm đối xứng với A qua O . Khi đó AE là đường kính của đường tròn ngoại tiếp ∆ABC
Tứ giác ADEH có O là trung điểm HD và AE nên là hình bình hành
\( \Rightarrow \overrightarrow {HA} + \overrightarrow {HE} = \overrightarrow {HD} \)(1)
Lại có: \(\widehat {ACE}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ACE} = {90^0}\)\( \Rightarrow EC \bot AC\), mà \(BH \bot AC\)
\( \Rightarrow EC//BH\)
Chứng minh tương tự ta có \(BE//HC\)
Tứ giác BHCE có \(EC//BH\), \(BE//HC\) nên là hình bình hành
\( \Rightarrow \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HE} \)(2)
Từ (1) và (2) suy ra \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HA} + \overrightarrow {HE} = \overrightarrow {HD} \) (ĐPCM)
Bài 46 trang 92 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 46 thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 46 trang 92 SBT Toán 10 - Cánh Diều, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập. Lưu ý rằng, trước khi bắt đầu giải bài tập, bạn cần nắm vững các kiến thức cơ bản về vectơ và các phép toán vectơ.
Câu hỏi: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Lời giải:
Để giải các bài tập về vectơ một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Để củng cố kiến thức về vectơ và các phép toán vectơ, bạn có thể làm thêm một số bài tập tương tự sau:
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã trình bày, bạn sẽ tự tin hơn trong việc giải bài 46 trang 92 SBT Toán 10 - Cánh Diều và các bài tập về vectơ nói chung. Chúc bạn học tập tốt!