Logo Header
  1. Môn Toán
  2. Giải bài 65 trang 106 SBT toán 10 - Cánh diều

Giải bài 65 trang 106 SBT toán 10 - Cánh diều

Giải bài 65 trang 106 SBT toán 10 - Cánh diều

Bài 65 trang 106 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 65 trang 106 SBT Toán 10 Cánh Diều, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho tam giác ABC và G là trọng tâm của tam giác. Với mỗi điểm M, chứng minh rằng:

Đề bài

Cho tam giác ABCG là trọng tâm của tam giác. Với mỗi điểm M, chứng minh rằng:

\(M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\) (*)

Phương pháp giải - Xem chi tiếtGiải bài 65 trang 106 SBT toán 10 - Cánh diều 1

Bước 1: Sử dụng tính chất \({\overrightarrow a ^2} = {a^2}\) , tính chất trọng tâm tam giác và tách vectơ để biến đổi vế trái

Lời giải chi tiết

Do G là trọng tâm tam giác ABC nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

Biến đổi vế trái (*) ta có:

\(M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)\( = {\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)

\( = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2} + 2\overrightarrow {MG} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\)

\( = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2} + 2\overrightarrow {MG} .\overrightarrow 0 \)

\( = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\) = VP (*) (ĐPCM)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 65 trang 106 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 65 trang 106 SBT Toán 10 - Cánh Diều: Hướng dẫn chi tiết và dễ hiểu

Bài 65 trang 106 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để tính góc giữa hai vectơ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, giải các bài toán về hình học phẳng và không gian.

Nội dung bài tập 65 trang 106 SBT Toán 10 - Cánh Diều

Bài tập 65 thường bao gồm các dạng bài sau:

  1. Tìm tọa độ của một vectơ: Cho các điểm A, B, C, tìm tọa độ của vectơ AB, AC, BC.
  2. Tính độ dài của một vectơ: Sử dụng công thức tính độ dài của vectơ dựa trên tọa độ.
  3. Tính tích vô hướng của hai vectơ: Sử dụng công thức tính tích vô hướng và suy ra mối quan hệ giữa hai vectơ (vuông góc, song song, đồng hướng, ngược hướng).
  4. Chứng minh các đẳng thức vectơ: Sử dụng các quy tắc phép toán vectơ để chứng minh các đẳng thức.
  5. Giải các bài toán hình học: Sử dụng vectơ để giải các bài toán về tam giác, hình bình hành, hình chữ nhật, hình vuông, hình thoi, và các hình đa giác khác.

Lời giải chi tiết bài 65 trang 106 SBT Toán 10 - Cánh Diều

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)

Ví dụ: Cho tam giác ABC với A(1;2), B(3;4), C(5;0). Tính độ dài của vectơ AB và AC.

Giải:

  • Vectơ AB = (3-1; 4-2) = (2; 2)
  • Vectơ AC = (5-1; 0-2) = (4; -2)
  • Độ dài của vectơ AB = √(22 + 22) = √8 = 2√2
  • Độ dài của vectơ AC = √(42 + (-2)2) = √20 = 2√5

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:

  • Nắm vững định nghĩa và các phép toán vectơ.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng sơ đồ hình học để minh họa các vectơ và các mối quan hệ giữa chúng.
  • Kiểm tra lại kết quả sau khi giải xong bài tập.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, các em học sinh có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về vectơ trên YouTube.
  • Các diễn đàn học toán để trao đổi và học hỏi kinh nghiệm.

Kết luận

Bài 65 trang 106 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 10